
✬

✫

✩

✪

C E D A R

Technical Report Number 10

Cedar.Gdl

Java Library User Manual

Kevin Sancho

July 2014

Publication Note

This report is based on the work done by the first author during his internship in the

CEDAR Project toward the obtention of his MSc degree at the Université Claude

Bernard Lyon 1, on a topic proposed by Prof. Hassan Aı̈t-Kaci [3, 2].

Contact information:

LIRIS - UFR d’Informatique

Université Claude Bernard Lyon 1

43, boulevard du 11 Novembre 1918

69622 Villeurbanne cedex

France

Phone: +33 (0)4 27 46 57 08

Email: kevin.steven.sancho@gmail.com

CEDAR Project’s Web Site: cedar.liris.cnrs.fr

Copyright c© 2014 by the CEDAR Project.

This work was carried out as part of the CEDAR Project (Constraint Event-Driven Automated

Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1 (UCBL). It may not be

copied nor reproduced in whole or in part for any commercial purpose. Permission to copy

in whole or in part without payment of fee is granted for non-profit educational and research

purposes provided that all such whole or partial copies include the following: a notice that

such copying is by permission of the UCBL, with an acknowledgement of the authors and in-

dividual contributors to the work; and all applicable portions of the copyright notice. Copying,

reproducing, or republishing for any other purpose shall require a license with payment of a

fee to the UCBL. All rights reserved.

http://cedar.liris.cnrs.fr

CEDAR Technical Report Number 10

Cedar.Gdl

Java Library User Manual

Kevin Sancho

kevin.steven.sancho@gmail.com

July 2014

Abstract

This report is a user manual for the Cedar.Gdl Java library.

Keywords: Abstract Java Library, User Manual, Cedar.Gdl

Résumé

Ce rapport est un guide d’utilisateur de la bibliothèque Java Cedar.Gdl.

Mots-Clés: Bibliothèque abstraite Java, Guide d’utilisation, Cedar.Gdl

Table of Contents

1 Brief Overview of the Library 1

2 Parameters 1

3 Local Kernel and Local Domain 3

4 Creating a Commutative Semiring 5

4.1 Creating a commutative monoid . 5

4.2 Creating an operation . 9

4.3 Creating a set K . 11

4.4 Creating a function . 11

5 More Possibilities 16

6 Memo-Functions 17

SANCHO, K. Cedar.Gdl User Manual

This document is a step-by-step guide explaining how to use the Cedar.Gdl Java

library [2]. It is assumed that the reader is familiar with the GDL and how it works [1].

It uses the Fast-Hadamard Transform (FHT) as an illustration.1

1 Brief Overview of the Library

This section overviews the contents of the Java packages that make up the Cedar.Gdl

library.

To use it, the first step is to add the library Cedar.Gdl.jar to your project or your

JAVAPATH java-executable path. The library is composed of several packages:

• Abstract—contains all the basic abstract classes described in Section 2. These

are all the classes that one must extend in order to instantiate specific functions

and operations.

• Environment—contains two files: display and environment, which

list all the parameters.2

• GDL—contains all the methods that perform the GDL algorithm once a GDL

problem is instantiated. The only method one needs to invoke is GDL Run().

• implemented xxx—five packages have names matching this pattern. They

contain instantiations of the abstract classes. For example, the usual addition and

multiplication of the commutative semiring of the Rational Numbers,3 functions

for the fast Hadamard transform are already available. One can can directly in-

voke them in one’s code or use them as template guides to follow for construct-

ing one’s own class.

• Message—contains all the classes that manage messages during the Message-

Passing Algorithm. N.B.: These are not meant to be used nor modified.

• Util graph—contain all the classes related to graph construction and manip-

ulation. N.B.: These are not meant to be used nor modified.

• Util Implemented Function—examples of classes that support/enhance

the implemented functions. Other possible features for these functions are de-

scribed in detail.4

• Util Math—contains all the classes that represent mathematical objects such

as, for instance, local kernels and local domains.

2 Parameters

This section contains a list of important parameters which impact the output of the

GDL. The following list is not complete. For a complete list please, please refer to the

1See [1] and [2].
2See Section 2.
3These are in fact numbers of type float or double.
4See Section 5.

July 2014 Page 1 / 20

SANCHO, K. Cedar.Gdl User Manual

Javadoc documentation.5

All these parameters are optional and have default values if omitted. Therefore, it is

possible to use the library without using them. However, it is recommended to have at

least a brief overview of the different possibilities to get an idea of what they may be

used for.

The DISPLAY class defines:

• DISPLAY MODE ON: default value true. This field is used to show or hide the

detail of the tree construction on the standard output.

• DISPLAY RESULT MODE ON: default value true. This field is used to show

or hide the result of the GDL message-passing algorithm. Even if this field is set

to false it is still possible to use one’s own own’s specific class to display the

output.6

• GRAPHIC DISPLAY MODE ON: default value true. The Cedar.Gdl library

uses a library called gs-corewhich supports graph displaying. The interesting

point of this library is that it positions a graph’s vertices on its own: it display

graphs without the need to specify specific coordinates for all the vertices. This

allows to display the local domain graph, junction tree, and all other kinds of

graphs relevant to the GDL in a visual manner in addition to textual form. This

parameter activates or deactivates such graph displays in small windowsq.

The ENVIRONMENT file contains:

• ENABLE REAL CALCULATION: default value true. This field allow to cal-

culate or not the result of the message passing algorithm. If set to false the

output of the message passing algorithm will only be the simplification done by

the GDL problem. Therefore, the problem itself will not be calculated.

• ENABLE MEMO FUNCTION: default value true. Memo-functions are able to

store previously calculated results with the purpose of never calculate twice a

same problem. This can allow to spare a huge number of calculations and con-

sequently time. However, they requires memory in order to store the results.

This is a trade memory against calculations. Furthermore, the number of opera-

tions spared is not defined, it depend of the problem and of it simplification. For

more detailed informations about Memo-functions, please refer to Section 6.

• SINGLE VERTEX: default value false. This field is used to switch from the

all vertices problem to the single vertex. If this field is set to true the field

INDEX VERTEX SVP must be set with the id of one vertex. The Id of the

vertex correspond to the Id of one local domain.

There are two others important fields in the class ENVIRONMENT, and these are

listOfResultParameter and listResults. The first one is the list of result

5
http://cedar.liris.cnrs.fr/documents/Cedar.Gdl-javadoc.html

6See Section 5.

July 2014 Page 2 / 20

http://cedar.liris.cnrs.fr/documents/Cedar.Gdl-javadoc.html

SANCHO, K. Cedar.Gdl User Manual

Environment.ENVIRONMENT.setSINGLE_VERTEX(true);

Environment.ENVIRONMENT.setINDEX_VERTEX_SVP(5);

Figure 1: Environment and display settings for an example of the FHT.

Local Domain Local Kernel

{y1, y2, y3} f(y1, y2, y3)
{x1, y1} (−1)x1y1

{x2, y2} (−1)x2y2

{x3, y3} (−1)x3y3

{x1, x2, x3} 1

Table 1: Local domains/kernels for the FHT’s GDL formulation

computed by the Message-Passing Algorithm (in the case where ENABLE REAL CAL-

CULATION is set to true). This field is a list of list of Objects. Each list contain

the results for a specific vertex. If the problem is set as a single vertex problem only

one list would be created. The second field is a list of list of parameter. The two fields

are linked because a same index in both list will correspond to a list of parameter and

its result. These two field do not have to be used. In most cases, the standard output

of the library is enough. However this leave anyone free to create is own output class.

The Section 5 discuss some possibilities.

These two classes are here to allow an easy personalization of the library. It is not

necessary to use them but they can be useful. In the case of the Fast-Hadamard Trans-

form it is possible to begin the method as described in Figure 1. As can be seen on

Figure 1, the number of parameters is low. So this does not take long because all the

other parameters simply use their default values.

3 Local Kernel and Local Domain

This section describes how to specify a GDL problem consisting of local domains and

local kernels, into the library. But let us first go through a quick refresher on the GDL

formulation of the Fast-Hadamard-Transform.7 The first thing to do is to create an

instance of a commutative Semiring. In that case, the commutative semiring is the

usual additions and multiplications in real. Because this set is already implemented

in the package implemented Semiring the only thing to do is to instantiate it

and create a new GDL problem: If your looking for a commutative Semiring which

is not implemented in the library please refer to the Section 4. Once this is done, the

variables which will be needed must be instantiated. A class call Variable, in the

package Util Math, is already in the library. For the FHT we now need to create 6

7See Table 1.

July 2014 Page 3 / 20

SANCHO, K. Cedar.Gdl User Manual

Abstract_CommutativeSemiring semiRing = new

UsualAdditionMultiplicationInR();

GDL gdl = new GDL(semiRing);

Figure 2: Instantiation of a new GDL problem

Abstract_SetK binarySet = new Binary();

Variable x1 = new Variable();

x1.setLabel("x1");

x1.setSetK(binarySet);

Variable x2 = new Variable();

x2.setLabel("x2");

x2.setSetK(binarySet);

Variable x3 = new Variable();

x3.setLabel("x3");

x3.setSetK(binarySet);

Variable y1 = new Variable();

y1.setLabel("y1");

y1.setSetK(binarySet);

Variable y2 = new Variable();

y2.setLabel("y2");

y2.setSetK(binarySet);

Variable y3 = new Variable();

y3.setLabel("y3");

y3.setSetK(binarySet);

Figure 3: Creation of the variables for the FHT

variables which takes value in the binary set. This can be done easily as describe in

Figure 3.

The first step is the instantiation of sets. For the FHT, all the variables are taking values

in the binary set. Consequently, only this set need to be instantiated. Then for each

created variables a unique label and a reference to a set K must be defined(For Set

creation please refer to Section 4.3). Once all the variables are created, one must not

forget to set the number of variables used with the command:

gdl.setNbVariable(6);

This is important since the path to find a junction tree will depend on the number of

variables.

We now have the variables needed to defines the local domains. The only thing left is to

July 2014 Page 4 / 20

SANCHO, K. Cedar.Gdl User Manual

K 〈+, 0〉 〈×, 1〉

{true,false} 〈OR,false〉 〈AND,true〉

Table 2: The AND/OR semiring

have the functions required to create the local kernels. Again, two options are possible:

either using an instantiated function of the library, or creating a new function.8

Figure 4 gives more detail on how to input the local domains and local kernels.

All the step described in Figure 4 must be done in order to create a association local

domain, local kernel. In the case of the FHT, we still have to input the 4 others local

domains and local kernels:

At this point, one now has created a complete instance of a GDL problem. Hence, the

Cedar.Gdl library’s GDL algorithm can now be invoked with the method call:

gdl.GDL_Run();

The section showed how to create a GDL instance. Section 4 explains how to create

and instantiate one’s own specific semiring classes, and use them with the library.

4 Creating a Commutative Semiring

This section is a step-by-step explanation of how to create a commutative semiring

instance. We will use the example of how implement the conjunctive Boolean semiring

described in Table 2.

An abstract commutative semiring structure must be instantiated by providing imple-

mented (concrete) classes for two commutative monoids and one set K. Figure 7 dis-

plays the code for an “AND” Semiring.

4.1 Creating a commutative monoid

This section explains the construction of a commutative monoid. The creation of com-

mutative monoid instances is part of that of commutative semiring instance. The code

shown in Figures 8 and 9 is an example of doing so for the creation of concrete class

“ANDMonoid” implementing abstract class Abstract Co-mutativeMonoid.

The constructor is used to set the identity element and define a label for the monoid.

The three other methods’s purpose is to perform the monoid operation over different

data structures. The method Abstract Atom calculate(), is the most impor-

tant. It creates a result object from two input objects. It is the method that is used

during the message-passing algorithm. Its implementation is simple and relies on

the class Abstract Operation. It consists of instantiating a new object of type

Abstract Operation.

8Regarding the second case, please refer to Section 4.4.

July 2014 Page 5 / 20

SANCHO, K. Cedar.Gdl User Manual

//Creation of the first local domain and local kernel

LdAndLk LdAndLk1 = new LdAndLk();

//Creation of the function

Abstract_Function f1 = new AddThreeVar(y1, y2, y3);

//Create the local kernel

LocalKernel localKernel1 = new LocalKernel();

//set the function as local kernel

localKernel1.setFunction(f1);

//add the local kernel to the LdAndLk

LdAndLk1.setLocalKernel(localKernel1);

//Create a new local domain

LocalDomain localDomain1 = new LocalDomain();

//Add all the variable to the local domain

localDomain1.addVariable(y1);

localDomain1.addVariable(y2);

localDomain1.addVariable(y3);

//add the local domain to the LdAndLk

LdAndLk1.setLocalDomain(localDomain1);

//add an id

LdAndLk1.setIndentificator(1);

//input the created couple local domain / local kernel in

the gdl problem

gdl.getListLocalDomainAndLocalKernel()

.addOneLdAndLk(LdAndLk1);

Figure 4: Local domain kernel for the FHT

July 2014 Page 6 / 20

SANCHO, K. Cedar.Gdl User Manual

LdAndLk LdAndLk2 = new LdAndLk();

Abstract_Function f2 = new MinusOnePower(x1, y1);

LocalKernel localKernel2 = new LocalKernel();

localKernel2.setFunction(f2);

LdAndLk2.setLocalKernel(localKernel2);

LocalDomain localDomain2 = new LocalDomain();

localDomain2.addVariable(x1);

localDomain2.addVariable(y1);

LdAndLk2.setLocalDomain(localDomain2);

LdAndLk2.setIndentificator(2);

gdl.getListLocalDomainAndLocalKernel()

.addOneLdAndLk(LdAndLk2);

LdAndLk LdAndLk3 = new LdAndLk();

Abstract_Function f3 = new MinusOnePower(x2, y2);

LocalKernel localKernel3 = new LocalKernel();

localKernel3.setFunction(f3);

LdAndLk3.setLocalKernel(localKernel3);

LocalDomain localDomain3 = new LocalDomain();

localDomain3.addVariable(x2);

localDomain3.addVariable(y2);

LdAndLk3.setLocalDomain(localDomain3);

LdAndLk3.setIndentificator(3);

gdl.getListLocalDomainAndLocalKernel()

.addOneLdAndLk(LdAndLk3);

Figure 5: Instantiation of the Fast-Hadamard Transform—Part 1

July 2014 Page 7 / 20

SANCHO, K. Cedar.Gdl User Manual

LdAndLk LdAndLk4 = new LdAndLk();

Abstract_Function f4 = new MinusOnePower(x3, y3);

LocalKernel localKernel4 = new LocalKernel();

localKernel4.setFunction(f4);

LdAndLk4.setLocalKernel(localKernel4);

LocalDomain localDomain4 = new LocalDomain();

localDomain4.addVariable(x3);

localDomain4.addVariable(y3);

LdAndLk4.setLocalDomain(localDomain4);

LdAndLk4.setIndentificator(4);

gdl.getListLocalDomainAndLocalKernel()

.addOneLdAndLk(LdAndLk4);

LdAndLk LdAndLk5 = new LdAndLk();

Abstract_Function f5 = new

Implemented_Function.Number(1.0);

LocalKernel localKernel5 = new LocalKernel();

localKernel5.setFunction(f5);

LdAndLk5.setLocalKernel(localKernel5);

LocalDomain localDomain5 = new LocalDomain();

localDomain5.addVariable(x1);

localDomain5.addVariable(x2);

localDomain5.addVariable(x3);

LdAndLk5.setLocalDomain(localDomain5);

LdAndLk5.setIndentificator(5);

gdl.getListLocalDomainAndLocalKernel()

.addOneLdAndLk(LdAndLk5);

Figure 6: Instantiation of the Fast-Hadamard Transform—ctd. Part 2

public class OR_AND_SemiRing extends

Abstract_CommutativeSemiring {

public OR_AND_SemiRing() {

this.additionMonoid = new ORMonoid();

this.multiplicationMonoid = new ANDMonoid();

this.setK = new Implemented_SetK.Boolean();

}

}

Figure 7: Example instantiation of a semiring

July 2014 Page 8 / 20

SANCHO, K. Cedar.Gdl User Manual

public class ANDMonoid extends Abstract_CommutativeMonoid {

public ANDMonoid() {

this.neutralElement = true;

this.label = "AND";

}

@Override

public Abstract_Atom calculate(Abstract_Atom atom1,

Abstract_Atom atom2) {

return (new AND(atom1, atom2));

}

@Override

public Abstract_Atom calculateOnSet(List<Variable>

variable, Abstract_Atom atom1) {

return (new

GenericMultiplicationOperationOnSet(variable,

atom1));

}

Figure 8: Code for the creation of an “AND” monoid—Part 1

Method Abstract Atom calculateOnSet() is similar, but used for perform-

ing the operation over a set. Two generic methods offer this basic service for the semir-

ing’s two operations: GenericMultiplicationOperationOnSet()and Ge-

nericAdditionOperationOnSet(). These functions execute the operations

defined for the current commutative monoid over a set of base elements. However, it

is possible to override these defaults in one’s own specific subclass. The last method,

operation(), implements the operation on two objects and returns a result. It man-

ages the (unevaluated) syntactic expression of the operation, as well as whether or not

to evaluate this expression, and the value this calculation returns when performed.

4.2 Creating an operation

This section explains how to extend the Abstract Operation class and create

operators.

A monoid is an operation with some rules and a set. However in the library three cases

have to be separated:

1. the operation over two Abstract Atoms;

2. the operation over two Objects; and,

3. the operation over a set.

July 2014 Page 9 / 20

SANCHO, K. Cedar.Gdl User Manual

@Override

public Object operation(Object number1, Object number2) {

if (number1==null) {

if (number2==null) {

return null;

} else {

return number2;

}

} else {

if (number2==null) {

return number1;

} else {

if ((Boolean)number1) {

if ((Boolean)number2) {

return true;

} else {

return false;

}

} else {

if ((Boolean)number2) {

return false;

} else {

return false;

}

}

}

}

}

}

Figure 9: Code for the creation of an “AND” monoid—std. Part 2

July 2014 Page 10 / 20

SANCHO, K. Cedar.Gdl User Manual

An operation on Abstract Atoms returns a new (unevaluated) Abstract Atom

constructed from the operation’s arguments. An operation on Objects returns the

evaluated result of the actually performing the operation’s calculation. An operation

over a set is used in order to apply an operation over a set of variables and return an

(unevaluated) Abstract Atom result. Similar to the first method, this one is just

here to simplify the enumeration of the element in the variable’s set.

Let us have a closer look at the operation on two Abstract Atoms. It is necessary

to implement three methods:

1. Object calculate(List<Parameter> parameters), which is the

logic behind the operation;

2. returnVariableUsed(), which returns the variables used; and,

3. String toString(), which returns a printable string form of the syntactic

expression corresponding to the operation.

These methods were also in other classes seen previously. This is because the class

Abstract Operation also extends Abstract Atom. This allows the library to

perform nearly all the calculations with just four methods, which are present in all the

classes. For some code example, see Figure 10.

The method that calculate the result of two Object do not need to be created as a

specific class but can be directly written in the monoid class. For the last one there

is two possibilities. Either you only need execute the operation that you have created

over a set without further modifications. In such a case you can simply use the already

created classes. However, if you want to optimize or do some modification you will

have to create a second class extending Abstract Operation. Figures 11, 12,

and 13 give an example of instantiation that you can use as example. The only thing

that changes is the calculatemethod, which must be able to use all the set elements

of all the variables and compute the monoid operation on them.

4.3 Creating a set K

This section is about the creation of classes extending the Abstract SetK class.

In the library Cedar.Gdl, variables have to be associated with a set. Every set must

implement the abstract class Abstract SetK and implement the method getSet-

Content(). This method’s sole purpose is to return the contents of the set. Figure 14

shows an example of instantiation of a set.

4.4 Creating a function

The creation of functions is mandatory if you want to use the library Cedar.Gdl. In-

deed, local kernels are represented by function, and even the identity element extends

Abstract Function. However, the creation of new functions is simpled. The

first step is to extend the class Abstract Function; then, implement the method:

July 2014 Page 11 / 20

SANCHO, K. Cedar.Gdl User Manual

public class AND extends Abstract_Operation {

protected Abstract_Atom atom1;

protected Abstract_Atom atom2;

public AND(Abstract_Atom atom1, Abstract_Atom atom2) {

this.atom1 = atom1;

this.atom2 = atom2;}

@Override

public String toString() {

return "{"+this.atom1.toString() + "} AND {" +

this.atom2.toString()+"}";}

@Override

public Object calculate(List<Parameter> parameters) {

Environment.ENVIRONMENT.incresseNbCalculus_Operation();

boolean resultAtom1 =

(boolean)this.atom1.calculate(parameters);

if (resultAtom1) {

boolean resultAtom2 =

(boolean)this.atom2.calculate(parameters);

if (resultAtom2) {

return true;

} else {

return false;

}

} else {

return false;

}

}

@Override

public List<Variable> returnVariableUsed(List<Variable>

listVariablesUsed) {

listVariablesUsed =

atom1.returnVariableUsed(listVariablesUsed);

listVariablesUsed =

atom2.returnVariableUsed(listVariablesUsed);

return listVariablesUsed;

}

}

Figure 10: Code for the creation of an “AND” operation

July 2014 Page 12 / 20

SANCHO, K. Cedar.Gdl User Manual

@Override

public Object calculate(List<Parameter> parameters) {

if (ENVIRONMENT.isENABLE_MEMO_FUNCTION()) {

boolean foundResultAlreadyCalculated = false;

boolean exit1 = false;

int indexOldResult = 0;

while (!foundResultAlreadyCalculated && indexOldResult <

this.alreadyCalculated.size()) {

List<Parameter> oneResult =

this.alreadyCalculated.get(indexOldResult);

int indexInResult = 0;

exit1=false;

while (!exit1 && indexInResult < oneResult.size()) {

boolean okForThisParameter = false;

int indexInParameters = 0;

while (!okForThisParameter && indexInParameters <

parameters.size())

if (oneResult.get(indexInResult).equalLabelValue

(parameters.get(indexInParameters)))

okForThisParameter = true;

else

indexInParameters++;

if (okForThisParameter==false)

exit1=true;

indexInResult++;

}

if (exit1 == false)

foundResultAlreadyCalculated = true;

else

indexOldResult++;

}

if (foundResultAlreadyCalculated)

return this.alreadyCalculatedResults

.get(indexOldResult);

}

Object result = null;

List<List<Object>> listOfContentSet = new ArrayList<>();

for (Variable oneAdditionvar: this.additionVariables)

listOfContentSet.add(oneAdditionvar

.getSetK().getSetContent());

int nbSet = listOfContentSet.size();

List<Integer> listIndex = new ArrayList<>();

for (List<Object> oneSet: listOfContentSet)

listIndex.add(oneSet.size()-1);

boolean allCalculationDone = false;

boolean readyToCalculate;

int currentIndex = nbSet-1;

Figure 11: Code for the creation of an operation over a set—Part 1

July 2014 Page 13 / 20

SANCHO, K. Cedar.Gdl User Manual

while (!allCalculationDone) { // outer while loop

int numberOfLoops = 0;

List<Parameter> listParameter = new ArrayList<>();

String resultString = "OR => ";

for (Integer oneIndex: listIndex) {

Parameter newParameter = new Parameter();

newParameter

.setName(this.additionVariables.get(numberOfLoops));

newParameter

.setValue(listOfContentSet.get(numberOfLoops)

.get(oneIndex));

listParameter.add(newParameter);

numberOfLoops = numberOfLoops+1;

resultString = resultString

+ newParameter.getName().getLabel() + ": "

+ newParameter.getValue().toString() + " || ";}

listParameter.addAll(parameters);

Object calculationResult =

additionOn.calculate(listParameter);

result = ENVIRONMENT.getSemiRing()

.doAdditionOperation(result,

calculationResult);

if ((Boolean)result) {

if (Environment.DISPLAY

.isDISPLAY_CONSTRAINTSOLVING_ON())

System.out.println(resultString);

allCalculationDone = true;

readyToCalculate = true;

} else

readyToCalculate = false;

Figure 12: Code for the creation of an operation over a set—ctd. Part 2

July 2014 Page 14 / 20

SANCHO, K. Cedar.Gdl User Manual

while (!readyToCalculate) {

if (listIndex.get(currentIndex)==0) {

if (currentIndex==0) {

allCalculationDone=true;

readyToCalculate = true;

} else {

listIndex.set(currentIndex,

listOfContentSet.get(currentIndex)

.size()-1);

currentIndex--;}

} else {

listIndex.set(currentIndex,

listIndex.get(currentIndex)-1);

currentIndex=nbSet-1;

readyToCalculate = true;}

}

} // end of outer while loop

if (Environment.ENVIRONMENT.isENABLE_MEMO_FUNCTION()) {

List<Parameter> listSaveResult = new ArrayList<>();

for (Parameter oneParameter: parameters)

if (this.listVariablesNeeded

.contains(oneParameter.getName()))

listSaveResult.add(oneParameter);

this.alreadyCalculated.add(listSaveResult);

this.alreadyCalculatedResults.add(result);}

return result;

}

Figure 13: Code for the creation of an operation over a set—ctd. Part 3

July 2014 Page 15 / 20

SANCHO, K. Cedar.Gdl User Manual

public class IntegerFromXToY extends Abstract_SetK {

protected int from;

protected int to;

public IntegerFromXToY(int from, int to) {

this.from = from;

this.to = to;

}

@Override

public List<Object> getSetContent() {

List returnSetContent = new ArrayList();

for (int i=from; i<=to;i++) {

returnSetContent.add(Double.valueOf(i));

}

return returnSetContent;

}

}

Figure 14: Code for the creation of an “AND” monoid

functionImplementation(List<Parameter> parameters). The sec-

ond method (returnVariableUsed()), returns the variables used. The purpose

of this method is that every Atom can access all the variables that occur in it.

5 More Possibilities

This section discusses some possibilities offered by the Cedar.Gdl library. Al-

though it has an abstract nature, one may consider the construction of still abstract

though more specific classes. This allows one to enhance its capabilities as well as its

performance. For example, it could be useful to have variables carry supplementaries

informations. This is what happens for the N -Queens problem where variables are as-

sociated to a column in order to save calculations [2]. In such a case, a way to proceed

is to create a subclass of the class Variable. This new class can implement new

features and support special calculations—see Figure 15.

In Figure 15, one can see that the field this.extended is set to to “true.” This

field is here is order to specify when the class variable is extended or not. If this field is

“true,” this means that the variable can be cast into a more specific class. Of course,

when extending the variable class you still have to provide a complete definition for

the variable. One will also need to implement specific functions which will use the

specific fields of the new class.9

9See Section 4.4 for functions creation.

July 2014 Page 16 / 20

SANCHO, K. Cedar.Gdl User Manual

public class FixedVariable extends Variable {

private Object fixedValue;

public FixedVariable() {

this.extended = true;

}

public Object getFixedValue() {

return fixedValue;

}

public void setFixedValue(Object fixedValue) {

this.fixedValue = fixedValue;

}

}

Figure 15: Code for the creation of a subclass of the class Variable

The creation of variables that implement specific fields is not the only feature. As

explained in Section 1, there is a field meant to contain results, and the parameters

related to it. In some cases (i.e., the Fast-Hadamard Transform), the results provided

by the library are not in “final” form. It may be necessary yet to transform further the

provided results into a specific desired data structure for further consumption (if only

reporting). In that case, it is up to the library’s user to provide such display methods as

appropriate to one’s needs.

One is free to specify how to going from a result in graph form to a specific text output.

Next, two classes are described that display the result for the N -Queens Problem.10

These two classes use fields of the class ENVIRONMENT in order to get the output of

the library. It is then possible to use them as one wishes.

6 Memo-Functions

This section is about so-called memo-functions:11 what are they and how to use them

in the Cedar.Gdl library.

A memo-function is a useful implementation concept that enables saving repeated

computations. It stores previously calculated results in a local cache and so can re-

turn them without recomputing them if the function is again invoked on the same

arguments. In this way, it “remembers” the old result and returns it. This feature is

present in the already implemented examples of the GDL.

However, memo-functions trade memory for computation. Thus, although they are

10See Figure 16 and Figure 17.
11
http://en.wikipedia.org/wiki/Memoization

July 2014 Page 17 / 20

http://en.wikipedia.org/wiki/Memoization

SANCHO, K. Cedar.Gdl User Manual

public static void DisplayResultNQueenProblem() {

int nbOfQueen = Environment.ENVIRONMENT.getNbVariable();

List<List<List<Parameter>>> listOfListOfListOfParameter

= Environment

.ENVIRONMENT

.getListOfResultParameter();

List<List<Object>> listOfListResults =

Environment.ENVIRONMENT.getListResults();

int indexList = 0;

for (List<Object> oneListOfResult: listOfListResults) {

int index = 0;

for (Object oneResult: oneListOfResult) {

if (oneResult.equals(true)) {

List<Parameter> oneSolution

= (listOfListOfListOfParameter

.get(indexList))

.get(index);

Chessboard chess

= new Chessboard(nbOfQueen,

oneSolution);

chess.setVisible(true);

}

index++;

}

indexList++;

}

}

Figure 16: Code for a custom result-display class—Part 1

July 2014 Page 18 / 20

SANCHO, K. Cedar.Gdl User Manual

public Chessboard(int size, List<Parameter> solution) {

initComponents();

List<List<JPanel>> chessboard = new ArrayList<>();

this.setSize(350, 350);

((GridLayout) jPanel1.getLayout()).setRows(size);

((GridLayout) jPanel1.getLayout()).setColumns(size);

for (int i=0;i<size;i++) {

List<JPanel> oneRow = new ArrayList();

for (int j=0;j<size;j++) {

JPanel newJPanel = new JPanel();

if (i%2==0) {

if (j%2==0) {

newJPanel.setBackground(Color.lightGray);

} else {

newJPanel.setBackground(Color.WHITE);

}

} else {

if (j%2==0) {

newJPanel.setBackground(Color.WHITE);

} else {

newJPanel.setBackground(Color.lightGray);

}

}

jPanel1.add(newJPanel);

oneRow.add(newJPanel);

}

chessboard.add(oneRow);

}

int y;

int x;

for (Parameter oneParam: solution) {

y = ((VariableWithSupplementaryFixedField)oneParam

.getName()).getColumn();

x = (int)Math.round((Double)oneParam.getValue());

chessboard

.get(y-1)

.get(x-1)

.setBackground(Color.yellow);

}

}

Figure 17: Code for a custom result-display class—ctd. Part 2

July 2014 Page 19 / 20

SANCHO, K. Cedar.Gdl User Manual

natively implemented in Cedar.Gdl, one has the option to choose whether or not

to use this feature. This choice must be made depending on memory/CPU resources,

a problem’s specific nature, and the topology of the junction tree. Consequently, the

Abstract Atom class has two fields:

• List<Variable> listVariablesNeeded, and

• List<List<Parameter>> alreadyCalculated.

Figure 18 gives an example of code implementing memo-functions.

Because the fields are in the Abstract Atom class, one can use memo-functions

everywhere in the library.

References

[1] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE Transac-

tions on Information Theory, 46(2):325–343, March 2000. [Available online12].

[2] Kevin Sancho and Hassan Aı̈t-Kaci. The Cedar.Gdl Java Library for the Generalized

Distributive Law—Design and Implementation. CEDAR Technical Report Number 9,

Université Claude Bernard Lyon 1, Computer Science Department, Villeurbanne, France,

July 2014. [Available online13].

[3] Kevin S. Sancho. The Cedar.Gdl Java Library for the Generalized Distributive

Law. Master’s thesis, Université Claude Bernard Lyon 1, Computer Science Department,

Villeurbanne, France, June 2014.

12
http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

13
http://cedar.liris.cnrs.fr/documents/ctr09.pdf

July 2014 Page 20 / 20

http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
http://cedar.liris.cnrs.fr/documents/ctr09.pdf

SANCHO, K. Cedar.Gdl User Manual

if (ENVIRONMENT.isENABLE_MEMO_FUNCTION()) {

boolean foundResultAlreadyCalculated = false;

boolean exit1 = false;

int indexOldResult = 0;

while (!foundResultAlreadyCalculated && indexOldResult

< this.alreadyCalculated.size()) {

List<Parameter> oneResult =

this.alreadyCalculated.get(indexOldResult);

int indexInResult = 0;

exit1=false;

while (!exit1 && indexInResult < oneResult.size()) {

boolean okForThisParameter = false;

int indexInParameters = 0;

while (!okForThisParameter && indexInParameters <

parameters.size()) {

if

(oneResult.get(indexInResult).equalLabelValue

(parameters.get(indexInParameters))) {

okForThisParameter = true;

} else {

indexInParameters++;

}

}

if (okForThisParameter==false) {

exit1=true;

}

indexInResult++;

}

if (exit1 == false) {

foundResultAlreadyCalculated = true;

} else {

indexOldResult++;

}

}

if (foundResultAlreadyCalculated) {

//System.out.println("SPARE CALCULATION for: " +

this.toString());

return

this.alreadyCalculatedResults.get(indexOldResult);

}

}

Figure 18: Code example for a memo-function

July 2014 Page 21 / 20

C E D A R

Technical Report Number 10
Cedar.Gdl

Kevin Sancho

July 2014

	Brief Overview of the Library
	Parameters
	Local Kernel and Local Domain
	Creating a Commutative Semiring
	Creating a commutative monoid
	Creating an operation
	Creating a set K
	Creating a function

	More Possibilities
	Memo-Functions

