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Abstract

In recent years, extensive use of various devices and applications has given rise

to Big Data. At the same time, Linked Data technologies are becoming popular

because of the increasing trend of using Semantic Web applications. The new

term “Blinked Data” combining these two concepts—viz., Big Data and Linked

Data—has recently been introduced. Working with Blinked Data poses enor-

mous challenges regarding processing, storing, and querying huge and linked

data sets. In addition, complex queries—such as, specifically, SPARQL queries

with many joins and variables—can increase significantly the difficulty. There

are solutions available, which handle Blinked Data. However, the experiments

performed in the CEDAR project with several triplestores reveal that the cur-

rent technologies are not adequately efficient. This remains an issue that must

be addressed. In this report, we aim to palliate this shortcoming of the state of

the art. More specifically, we attempt to overcome the challenges of storing and

retrieving RDF data of size that ranges from gigabytes to petabytes. As part of

the CEDAR project, we develop a triplestore called CedTMart which guaran-

tees high-performance in processing complex queries. The triplestore relies on

various algorithms and is built on the Hadoop/MapReduce framework to ensure

scalability.

Keywords: Blinked Data, Hadoop/MapReduce, Big Data, Linked Data, Triplestore,

Optimization, RDF, SPARQL
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1 Introduction

This technical report is about a scalable and high-performance triplestore that enables

storing and querying Big Linked Data which has been termed Blinked Data in [3].

It has been defined as the intersection of two prominent concepts: Big and Linked

Data [18].

Resource Description Framework (RDF) [11] is a widely used technology for model-

ing Linked Data. Originally designed as a technology for modeling metadata, RDF—a

member of the World Wide Consortium (W3C) family—models Linked Data in the

form of subject-predicate-object.1 It provides a mechanism to denote resources and

relationships between triples [9]. The RDF data are better known as RDF triples.

SPARQL (SPARQL Protocol and RDF Query Language)2 is a language provided by

the W3C to perform queries on RDF triples. It is one of the most widely adopted tech-

nology for retrieving and manipulating RDF triples. Together with RDF, SPARQL is

used for building the Semantic Web (SW) applications.

In recent years, extensive use of various devices (e.g., sensors, smart phones, and

tablets) and applications (e.g., Facebook and Twitter have given the rise to the notion

of Big Data [14] which is massive in size and has a wide variety.3,4 Processing queries

efficiently on Big Datasets is a well-known problem. Additionally, data today are not

only Big, they are Linked as well. This makes data processing and query processing

far more challenging.

The SPARQL and RDF-related technologies have a plenty to offer to the overlapping

worlds of Big Data and NoSQL [17]. A significant number of researchers are focusing

on these areas and many works have already been done. However, current technologies

more specifically, the triplestores are yet to be sufficiently powerful. As a result, they

do not address the challenges we mentioned earlier.

A limited number of triplestores is available for processing and querying Blinked Data.

Some of these are built on Hadoop/MapReduce framework5 which has drawn a huge

media attentions in recent years. With the power of Hadoop/MapReduce, some triple-

stores are capable of handling scalability. Hadoop is a de facto technology for building

scalable applications. It enables running applications on commodity hardware and thus

it is easier to scale-up the computation infrastructures. However, performance of appli-

cations is beyond the scope of Hadoop. This project aims to address the shortcomings

of existing technologies.

This research project is a fragment conducted within the Constraint Event Driven Au-

tomated Reasoning (CEDAR) research framework. In the context of Blinked Data

and as part of the CEDAR project, the objective of this research project is to develop a

triplestore called CedTMart (stands for CEDAR Triple Mart). The key purpose of this

triplestore is to enable storing and querying Blinked Data efficiently by guaranteeing

1
http://www.w3.org

2
http://www.w3.org/TR/rdf-sparql-query

3
https://www.facebook.com

4
https://twitter.com

5
http://hadoop.apache.org
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high-performance. The nature of the queries we consider in this project is conjunctive

and contains several variables. The CedTMart is designed to deal particularly with

huge datasets whose size ranges from gigabytes to petabytes. Additionally, the triple-

store is developed to serve as a distributed and scalable storage that can be deployed

on a large number of commodity hardware such as, clusters on cloud infrastructure.

The report is organized as follows. In Section 2, the motivation behind this research is

presented. Section 3 discusses the state of the art. In Section 4, our solution architec-

ture, CedTMart, is presented. Section 5 describes implementation issues. In Section 6,

we report results of experiments we conducted with our design. A conclusion is drawn

in Section 7, along with some perpectives of future work.

2 Motivation

The Linked Data concept is developed to make the web easier to manage (accuracy of

the information returned by the queries, reasoning, elimination of redundancies, etc..).

The advent of various technologies have enabled to develop intelligent applications

with ability to reasoning data. Also, the technologies specifically RDF seems promis-

ing to solve the well-known data silo problem. It can simplify the traditional way of

connecting tables in Relational Database Management System (RDBMS). These have

drawn a huge attentions recently and thus, many large enterprises (e.g., Facebook,

Twitter, and LinkedIn) have adopted Linked Data technologies.6

The increasing trend of adopting Linked Data has promoted challenges of managing

and querying Blinked Data. The size of current datasets is increasing dramatically. For

instance, Facebook generates more than 7 Terabytes (TB) data everyday [14]. Such

large-scale organizations are looking for massively scalable, high-performance and ro-

bust triplestore technologies. This implies that the state-of-the-art is missing a solution

with optimized algorithms which is strongly required to manage jobs such as, query

processing on such huge size datasets.

The CEDAR team had tested a few of existing open source triplestores.7 The tests

unfolded some important issues about those triplestores and their performance. The

triplestores are built on widely known Hadoop/MapReduce technology. The study

concluded that some of these triplestore handle scalability issue successfully, how-

ever, their performance remains an optimization problem that has yet to be addressed.

The results show that the triplestores are not sufficiently capable to process complex

queries on Blinked Datasets within a reasonable time. The study found that of all

these triplestores some lack efficient storing techniques which essentially severely af-

fect the performance. These drew our attention to the research towards developing a

high-performance and scalable triplestore.

6
https://www.linkedin.com

7These results are published in [3].
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3 Related Work

The technologies related to this research revolve around distributed and parallel com-

puting. Also, it involves Linked Data. This section provides comprehensive details of

the technologies related to this research.

3.1 Fundamental technologies

This section is a review of the fundamental technologies used so far in Blinked Data

applications.

3.1.1 Linked data

Linked Data is simply about using the Web to create typed links between data from

different sources [4]. It is a means of publishing “web-native” data using standards

like HTTP, URIs and RDF [15]. Bizer et al. [8] define Linked Data as data published

on the Web in such a way that is machine-readable, with meaning explicitly defined,

linked to other external data sets, and can in turn be referenced through links from

other external datasets. Linked Data initiative was made by the W3C to transform the

web from unstructured heterogeneous data to a semantic representation, in order to

link information from different web pages.

3.1.2 MapReduce

First proposed in 2004, MapReduce [13] is a programming model and an associated

implementation for processing and generating large data sets. Users specify a map

function that processes a key/value pair to generate a set of intermediate key/value

pairs, and a reduce function which merges all intermediate values associated with the

same intermediate key.

A new model called Map-Reduce-Merge [30] introduced three years after the concept

of MapReduce added a Merge phase. This new phase merges efficiently data already

partitioned and sorted/hashed by the map and reduce modules. This was to overcome

some limitations on heterogeneous datasets.

Then, in 2012, a new language calls RDFPath [26] was conceived. It follows a syntax

similar to XPath for XML that can be used for selecting the values of properties. This

query language transforms automatically path queries into MapReduce jobs and makes

use of scaling properties of the MapReduce framework.

3.1.3 Hadoop

This Hadoop framework is composed of the several modules. Currently it has Hadoop

Common, which is the core component of the framework; HDFS (Hadoop Distributed

File System); Hadoop YARN which is a job scheduler and resource manager for clus-

ters; and MapReduce, which is a concrete programming model for large scale data
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processing. This Apache project develops an open-source platform for reliable and

scalable processing of large data in distributed environments. Hadoop itself has been

designed to automatically detect and handle failures at the application layer. There-

fore, it can guarantee highly-available services on top of relatively uncertain clusters

and networks.

Yahoo Inc. is a primary contributor of Hadoop’s core architecture (MapReduce imple-

mentation and HDFS [27]).8 The HDFS is designed to store large data sets reliably and

to stream them at high bandwidth to user applications in large clusters. By distributing

storage in multiple data nodes and sharing computation across them, the resource can

grow with demand. This then becomes a viable solution for storing RDF datasets.

As mentioned in previous section, the combination, RDF Data using MapReduce can

provide better scalability, fault-tolerance and compatibility for newer Web-based and

mobile applications. The Hadoop/MapReduce has been used in building several large-

scale triplestore for processing and querying Linked Data. Some these are open source

including SHARD [27], HadoopRDF [21] and others are commercial products.

3.1.4 Querying with SPARQL

The extensive use of semantic web and large RDF datasets pose significant challenges

for the efficient storage and retrieval of RDF graphs. In the last few years, several

algorithms and frameworks have been proposed or implemented to address these chal-

lenges. Splitting or partitioning are often used to fit RDF data into distributed environ-

ments. Various graph-based models have been developed to optimize query execution

from different aspects. We describe some predominant query processing technologies

in this section.

The concept of BitMat, a bit matrix structure for efficient querying over graph databases,

was proposed in 2008 [5]. Although previous works such as vertical partitioning have

already proposed some database storage and query optimization techniques, there was

still a challenge for queries having low-selectivity triple patterns, scalability of the

querying method, and optimizations. The main idea of BitMat is a new way to store

RDF graphs : to transform RDF datasets into a compact in-memory storage and to

use some bitwise operations to obtain a faster processing of queries, comparing to the

conventional RDF triple stores. The authors have also published several related works

including the detailed implementation and processing mechanisms [5] and a query

processing algorithm which is also based on compressed bit-vectors [4].

DARQ [22] was proposed in 2008, which is an engine for federated SPARQL queries.

It overcomes the large overhead in network traffic. It allows to query one single RDF

graph despite the real data being distributed on the web. Using a service description

language, the engine can decompose a query into sub-queries. Each of these sub-

queries can be answered by an individual service. Also, DARQ uses query rewriting

and cost-based query optimizations to speed-up query execution.

Another approach [20] where an iterator-based pipeline has been used to perform par-

8
https://fr.yahoo.com/?p=us
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allelized SPARQL queries. This approach discovers relevant data with URIs resolved

over HTTP, with an extension to avoid abnormal long delays during the URI prefetch-

ing in each execution. Since a query is represented by a tree structure, a tree of itera-

tors has been used for a number of input graph patterns. Eeach iterator returns solution

mappings (solutions for the set of triple patterns assigned to it) to its predecessors.

3.1.5 Graph partitioning

Efficient management of RDF data is an important factor for realizing the vision of

SW. Large-scale RDF datasets on a single machine do not scale well. Thus, distributed

technologies are used to distribute RDF triples to multiple machines. However, due to

inefficient dataset partitioning techniques used by the existing solutions, the perfor-

mance of distributed triplestores is significantly affected.

The idea of partitioning RDF data vertically was proposed in [1]. The authors proposed

to use RDBMS to store the re-structured (split, sorted and indexed) RDF data. In this

approach, each table is sorted by subject. Therefore, it is possible to locate them faster.

This alternative solution has an extended idea for column-oriented architectures such

as MonetDB,9 and works better with optimized code and data compression.

Another triple indexing scheme was proposed in [30], which considers RDF data as a

graph, partitions the graph into multiple sub-graph pieces, and store them individually.

Over these partitions, a signature tree is used to index the URIs. When queries arrive,

this index can locate all partitions with high speed. This may include the matching of

the queries by their constant URIs.

Also, researchers have discovered a promising approach reported in [29]. It employs

the nature of graphs to minimize the relations between partitions. It optimizes sys-

tem design based on the relations to reduce communication cost of query-processing

messages, balance size of partitions, and enhance parallelism through independent

sub-querying.

3.2 Triplestores

With fast-growing cloud services in the market, more and more enterprises move

their data nodes inside virtual infrastructure. Especially, in the production environ-

ment where people need reliable, high-performance and scalable solutions which allow

thousands of machines working in parallel to perform data queries on demand.

In RDF triplestores, one retrieves stored data that relate objects to others via the

SPARQL query language. Today, there is a list of implementations that provide the

RDF triplestore functionalities, including Apache Jena,10 AllegroGraph,11 Oracle RDF,

Sesame,12 etc., . . . Of all open source triplestores, two highly rated were experimented

9
https://www.monetdb.org

10
http://jena.apache.org

11
http://franz.com/agraph/allegrograph

12
http://www.openrdf.org
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within the scope of the CEDAR project. This section discusses some notable triple-

stores.

SHARD

SHARD13 was developed for storing and retrieving RDF data in a distributed envi-

ronment. Its main concern is scalability, which is a limitation of centralized database

management technologies. It is designed as Hadoop-based repository which caters

for building a distributed and parallel environment for storing and querying RDF data.

Since Hadoop allows any number of worker nodes, scaling up the computations should

not be problem. In other words, the number of computational node could in principle

be increased without degrading performance.

In SHARD, data are persisted in flat files in HDFS clusters. Each line in files represents

a triple. Queries are processed in an iterative manner. The iterative query processing

has been used to improve conventional MapReduce functions. In particular, it enables

incremental query processing to bind variables while satisfying the query constraints.

Each iteration consists of a MapReduce operation for a single query clause. It first

maps triple data from a dataset onto the clause matching triples, binds the clause vari-

ables, and lists all the variable bindings. Then, in the the subsequent step it reduces

the list of matched triples where duplicate 〈key, value〉 pairs are deleted. The fol-

lowing is the intermediate query binding step where variables from the current clause

are bound to values incrementally. Another MapReduce operation is performed in this

intermediate step over both triple data and previously bound variables that were saved

onto disk.

At a certain stage of this iteration (say, at the ith step), all ith variables are identified.

The map operation at this stage binds all the variables (if any) that were not seen in

the previous clause. In addition, the map operation rearranges the previous results.

The reduce operation applies a join over the intermediate results continuously until all

clauses are processed and variables satisfying the clauses are bound.

The final step filters bound variable assignments to satisfy the SELECT clause of the

given SPARQL query. The filtering is done during the map step and duplicates are

removed during the reduce step.

HadoopRDF

HadoopRDF [21] is another Hadoop-based triplestore. The main focus of HadoopRDF

is to optimize queries on Blinked Data. The triplestore uses Hadoop, and makes use in

particular of HDFS, to store the RDF triples.

The scalability issue is not given the main priority here as HadoopRDF relies on HDFS

for such issues. As for query-processing performance, on the other hand, since HDFS

is not concerned with such issues, HadoopRDF provides its own SPARQL query op-

timization. So, besides storing big RDF datasets using HDFS, it offers an algorithm

13
http://hadoop.apache.org
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which determines the best query plan needed to answer a given SPARQL query based

on a cost model.

HadoopRDF optimizes querying using in two phases: Data Preprocessing and Query

Processing. The tasks that are performed at preprocessing step include collecting input

from the dataset, converting the data into a format that is compatible with HDFS (viz.,

Notation314) carrying out Predicate Splitting (PS), and performing Predicate-Object

Splitting (POS). In the latter phase, the input is selected based on a given query, then a

query plan is generated, and the jobs are executed accordingly.

The most interesting features of HadoopRDF are its predicate and predicate-object

splitting. These two features play a significant role in compressing the dataset without

needing any CoDec.15 They may be viewed as a particular kind of indexing on triples.

The Predicate-Split (PS) function reads a triple and splits according to its predicate.

This means that all the subjects and objects with the same predicate will be stored in

one same file. For instance, if “WorksFor” is a predicate of n triples, then a single file

(say, “WorksFor-pred” will contain 〈subject, object〉 pairs of all the triples whose

predicate is WorksFor. On the other hand, the Predicate-Object Split (POS) function

discriminates triples according to the “rdf:type” denoting the type of the object.

This is called Predicate-Object Split of Type (POST). If the object of a RDF triple is

a literal, then the literal remains in the file named by the predicate. This operation is

called Predicate-Object Split of Non Type (POSNT).

In HadoopRDF, upon launching a query, inputs are selected for the query by an Input

Selector, a component of the MapReduce framework of HadoopRDF. A cost estimator

evaluates the costs by reading the selected inputs against the query launched by a user.

The plan generator provides a plan for the Map and Reduce jobs. Finally, the job

executor carries out these jobs on the datasets stored in the data nodes of the Hadoop

layer of the triplestore.

AllegroGraph

AllegroGraph16 is a high-performance RDF graph database system. It is designed for

Semantic Web applications to process big RDF datasets with meta-data.

AllegroGraph allows two RDF serialization formats: RDF/XML and N-Triples. It

stores graph information of triples having the same context. More concretely, Allegro-

Graph stores data in the subject, predicate and object triples with added graph fields

and more quality. For example, consider a triple where one node S is connected to

another node O via the edge P with additional data G.17 Once data stored in Alle-

groGraph, it is automatically indexed and then the SPARQL queries are carried out

through an API provided by the framework. A hash-based partitioning technology is

14
http://www.w3.org/TeamSubmission/n3

15This stands for Compression and Decompression).
16
http://franz.com/agraph/allegrograph

17One might then argue that it is a quadruple rather than a triple. However, it is a triple in that

〈S, P, O〉 has a specific standard meaning, while G is optional and has no specified structure nor se-

mantics other than being “additional information” appropriate to whatever use to be made of it—such as

comments, annotations, etc., . . .
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used for stored triples. Thus, the query processing engine does not need to perform

MapReduce operations.

RDFS++ is an ontology engine provided by the AllegroGraph framework to dynami-

cally maintain entailment for reasoning without the materialization phase. The mate-

rialization is a pre-processing phase to compute and store inferred triples for a better

efficiency of future queries. However, it is difficult to maintain. By doing this, Alle-

groGraph simplifies the maintenance of stored ontology information and reduces time

to perform queries on modified data.

It is important to note that AllegroGraph is more flexible and scalable. It encodes val-

ues directly into its triples, so that new predicates and 1-to-N relations can be easily

inserted by users without significant changes of existing schema. This could be suit-

able for Web-based open systems in future. According to a list recorded by W3C,18

AllegroGraph has announced in August 2011 that it was the first commercial product

which could load and query for 1 trillion RDF triples, with the help of a supercomputer

infrastructure.

Apache Jena

Apache Jena19 is an open source framework for Semantic Web and Linked Data appli-

cations. It provides various modules to process RDF data. External applications can

interact with it directly using provided rich Java API or via HTTP layer.

RDF API is a core component for reading and storing RDF data. There are two primary

concepts:

• Model—this is the main container API for RDF information in graph form. It

has multiple methods. They are: readers, writers and iterators which allow

to create RDF-based applications. The other methods are in-memory and sec-

ondary storage data persistence to manage resources.

• Graph—this is a simpler abstract interface with low-level RDF stores which is

lighter to use and easier to re-engineer.

AR20 is a SPARQL query processor with a Java application API. Query is a main

class contains different parser methods and all the details of parsed SPARQL queries.

QueryExecution calls execution functions then returns query solutions.

Jena provides a component called TDB for storing triples.21 It can be used for high-

performance RDF storage and query on single machines. TDB can be managed by

command line scripts or via the Java API. It fetches TDB-graphs or RDF datasets and

creates Model or Dataset objects that can directly be queried or used by Jena API.

TDB enables concurrency and transactions with an integrated execution optimizer.

The SPARQL queries are transformed algebraically before execution and executed

18
http://www.w3.org/wiki/LargeTripleStores

19
http://jena.apache.org

20
http://jena.apache.org

21
http://jena.apache.org/documentation/tdb
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by a dynamically calculated plan. Fusek122 is another component of Jena designed

as a SPARQL server that uses TDB for persistent storage and provides the SPARQL

protocols for queries, normal updates and REST updates over HTTP.

HadoopDB

Hadoop is well-known because it enables building scalable, fault-tolerant and flexi-

ble parallel data processing applications. In [2], the authors discuss the feasibility of

HadoopDB [2], which comprises DBMS and MapReduce to run on low-end commod-

ity machines or in clouds. Introduced in [2], HadoopDB is an approach for parallel

databases on top of MapReduce-based systems. It extends the Hadoop framework and

adds a few new components and concepts.

HadoopDB comprises of four components. The Database Connector interface be-

tween the compute nodes to communicate with each other. The connector supports

several DBMS like MySQL and PostgreSQL. Represented by a MapReduce job, a

connector connects to JDBC-compliant database instances on nodes, launches individ-

ually optimized queries and returns result sets as 〈key, value〉 pairs. Catalog is a of

meta-data storage. It provides necessary information to the connector, and contains in-

formation about the distribution of datasets in clusters for example the locations of data

partitions. The Data Loader is responsible for data distribution to nodes, data parti-

tioning on nodes, and bulk-loading the single-node databases with partitioned chunks.

The hasher components are used for assigning MapReduce jobs to Hadoop. Finally,

the SQL Planner enables to process SQL queries. It extends Hive,23 an open source

data warehousing infrastructure on top of Hadoop, to enable MapReduce jobs connect

to tables stored as separate data files in HDFS.

Since HadoopDB uses clusters of single database systems instead of HDFS to store

datasets, it yields benefits of performance advantages. With enforced query execu-

tion approaches published in another paper [6]. Currently, HadoopDB provides better

performance and could be a good reference of our future benchmark.

RDF3X

RDF3X [23] is an RDF storage and retrieval system. It is an RDF triplestore with auto-

matic indexing. It comprises a query processor and a query optimizer which optimizes

queries based on a cost model.

In this triplestore, triples are stored in a sorted B+Tree to facilitate faster query pro-

cessing. A dictionary is used principally for long literal expressions and is built as

a mapping between concrete literal data and unique numerical ids. Once the triples

are compressed to ids only, the cost of dictionary indexes is considerably reduced, and

query execution can be faster simpler with the ids. The numerical results of queries

are transformed back into literal expressions and output to users. This is similar to the

underlying principle of our CedTMart triplestore.

22
http://jena.apache.org/documentation/serving_data

23
https://hive.apache.org
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RDF3X generates six indexes: SPO, SOP, OSP, OPS, PSO, POS which are maintained

to satisfy all possible permutations of queries. It is worth noting that the size of these

indexes are tolerable because they are built on numerical ids.

H2RDF

H2RDF+ [25] enables performing distributed queries especially merged and sorted

joins over a multiple indexes. It us built upon MapReduce programming model. The

indexes in H2RDF++ are built inside HBase.24 Like RDF3X, six indexes of S, P and

O are maintained in H2RDF for operations such as range index scan, but in a different

way. As HBase uses a key-value model, indexes store all triples in keys and leave the

values empty. Indexes are also id-based. Therefore, HBase is used as dictionary. What

is more, an aggregated indexing approach is designed.

In H2RDF+, there are two categories of aggregated indexes, with two bound elements

(sp_o, ps_o, po_s, op_s, os_p and so_p) and with one bound element (s_po, p_so,

p_os, o_ps, o_sp and s_op). These additional statistics are used to estimate the cost

and the size of the result set of a query.

H2RDF+ allows MapReduce-based bulk-import jobs to load and index large RDF

datasets, which can be practical to handle existing RDF datasets. It creates multi-

ple sub-jobs to create statistics of RDF literal data, assign ids to stored literal values,

create mappings between literal data and ids, store literal string values in partitions,

and create corresponding indexes into HFiles that can directly be loaded by HBase.

Additionally, the queries containing multiple triple patterns are guaranteed by merge

join algorithms exploiting pre-ordered indexes.

In H2RDF+, the cost-based query planner decides on the execution order of different

join operations to minimize the total execution time. HBase scan performance eval-

uation, Merge join cost model, Sort-Merge join cost model and Join Planner are four

algorithms integrated for executions.

PigSPARQL

PigSPARQL [28] is a SPARQL query processing system and a translation framework

based on SPARQL and Pig Latin [24], a new data analysis language developed by Ya-

hoo Research for processing large datasets. Pig Latin for Hadoop is an open source

Apache-incubator project which allows users to simplify and customize high-level

codes that reside above the MapReduce programs. In PigSPARQL, tasks are executed

by MapReduce jobs on a Hadoop cluster. The authors defined a series of translation

rules to represent RDF triples in Pig Latin. Also, an optimization strategy is provided

for translated SPARQL queries.

24
http://hbase.apache.org
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YARS2

YARS2 [19] is another triplestore which contains a query engine. It enables querying

over graph data with a compressed indexing framework optimized for read operations.

It provides a data partitioning mechanism to distribute indexes which optimize parallel

queries. Apache Lucene25 is used for keyword indexing for keyword lookups, with

quad indices for atomic lookups in graphs and join indices to search combinations of

paths in graphs.

YARS2 demonstrated its ability to process 7 billions of synthetically generated state-

ments. The join-processing algorithm gives a correct reasonable overall performance,

but a bottleneck of the throughput for index scan can be noticed.

Virtuoso

Virtuoso [16] is one of the top-rated triplestores. It is a multiple degree data server

product allows to manage RDF/XML datasets with dedicated Web service supports

(SOAP and REST). Virtuoso has a query engine providing native RDF support, bitmap

indexing and SQL query optimization. It also allows to directly map relational data

into RDF and perform join between RDF data and relational data. This aspect is im-

portant for enterprises to deal with existing data.

OpenRDF Sesame

OpenRDF Sesame is a complete RDF-based Semantic-Web framework.26 It includes

RDF parsers, writers, triple storage, reasoning, and querying. The OpenRDF Java API

enables connecting all leading RDF storage solutions. Several plug-ins and extensions

are available for different purposes. For example, the connection between Sesame and

Virtuoso, the support of PHP programs, the Big Data API, etc., . . .

Oracle RDF

Oracle Spatial and Graph [12] is a feature in the newer versions of Oracle Database.

It provides an RDF data management platform with complete API. For example, an

application using Jena API can manipulate graph-structured data stored in an Oracle

database.

4 Solution Architecture

This section presents the architecture of our triplestore. CedTMart comprises three

modules: Pre-processing module, Data Distribution module, and Query Optimization

module. Figure 1 presents a high level architecture of CedTMart. These modules carry

25
http://lucene.apache.org/core

26
http://www.openrdf.org
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Figure 1: The Architecture of CedTMart

out several functions: a) converting RDF data from any format to Notation3 (N3)

format b) cleaning RDF triples, c) compressing datasets, d) distributing data, and e)

processing and optimizing SPARQL queries.

4.1 Preprocessing module

This module resides at the top layer of the CedTMart architecture. It carries out five

functions: convert, read, clean, partition, and compress.

• It converts RDF triples to N3 triples [7], which is a shorthand non-XML serial-

ization of RDF data model and more compact and readable than RDF notation.

• It reads triples from converted N3 files.

• It validates triples with respect to the syntax recommended by the W3C and

stores invalid tokens in a specified folder.

• It carries out three partition-related functions:

– predicate partition (PP),

– predicate-object partition of type (POPT), and

– predicate partition of object non type (POPNT),

by storing partitioned data in specified files.

• It compresses data using D-Gap Compression method.
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We use multi-threading technique to perform these tasks efficiently. It is a suitable

technique which enhances the I/O performance.

4.2 Data distribution Module

In pre-processing module, data are partitioned to enable efficient query processing

on Blinked Data sets. In this module data are re-repartitioned. The key purpose re-

paritioning data is to slice a large files into smallers ones and then distribute them

intelligently within clusters that contain hundreds of nodes. The data distribution relies

on edge betweenness technique. The core of this notion has essentially been borrowed

from the technique called the edge centrality which was used within the social network

analytic domain. Our edge betweenness algorithm measures the closeness between the

predicates. It is measured by comparing the common subjects and objects between two

predicates.

4.3 Query optimization module

This is a critical module of CedTMart. It comprises two components: query planner

and query executor. The query planner has two main parts. The first part deals with

query partitioning and the second part deals with sequencing the order of execution.

For query partitioning, we have devised a query plan. The plan is straightforward:

decomposing (SPARQL) queries based on the number of variables associated with the

triple patterns. Note that, a SPARQL query can be represented a graph. For a given

query, the CedTMart reads the triple patterns within WHERE clause and decomposes

the query into multiple subgraphs. Then, the order of executing subgraphs is defined.

We call this query flow. The execution order of subgraphs is determined by number of

variables a subgraph contains. For instance, the subgraphs with ‘0’ ( or no) variable is

executed first followed by the subgraphs with ‘1’ variable and then ‘n’ variable. The

execution of subgraphs is continued until all subgraphs (with n maximum variables)

are executed. Additionally, the query planner defines the order of executing queries

within the subgraphs. In this case, the order is determined by the weight of the vertices

that compose the triple patterns of the given query. The query executor realizes the

order of query execution and execute them accordingly.

5 Development of CedTMart

CedTMart’s components perform various tasks which follow a sequence. Figure 2

shows the flow of tasks that are carried out in Preprocessing and Data Distribution

modules. The ongoing Query Optimization module is not shown in the Figure.

There are many technologies that we could use to implement different components of

CedTMart. However, in our case, the main constraint to deal with a huge amount of

data is the efficiency. The initial idea was to use not only JAVA functions (standard
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Figure 2: Flow of tasks performed by the triplestore

and external libraries) but also other scripts such as Perl and Shell.27 In addition, we

found some existing database systems which can be used for implementing different

functionalities of CedTMart. Using database system would enable to sidestep using

main memory. It would enable to use external memory buffer. In this regard, our

solution architecture is sufficiently flexible. It allows users to make a choice between

all proposed alternatives and can satisfy different constraints. For instance, if a user

has systems with huge size memories, he can choose memory-intensive alternative.

Conversely, if a user has machines with insufficient memories, he can process his jobs

using database technology which would unfortunately be time-consuming. So it is a

tradeoff that has to make by the users. A goal of our implementation is to find and

use a technique that assists to implement suitable method for each sub-task in different

situations, for instance, multi-threading.

As mentioned in last sections that we use the multi-threading technique to enhance the

processing performance. We have implemented a task assignment mechanism to put

the input source into equal parts for each thread. This is discussed later in this section.

We discuss the components of CedTMart in the following sub-sections.

5.1 Data converter

Of all RDF serialization, Notation3 (N3) [7] is not only human-readable but also con-

venient for semantic text parsing and thus, is more suitable as an input for processing

a MapReduce job than other formats (e.g., RDF/XML) [11]). Therefore, we chose N3

format to store data.

There are different formats for presenting RDF data such as RDF/XML, Turtle,28 N-

27
http://www.perl.org

28
http://www.w3.org/TR/turtle
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Triple.29 CedTMart supports several extensions including .rdf, .owl, .xml, .rdfs

etc., . . . It is able to accept input data with these formats yet, since N3 is the native

format for storing triples, the data are converted to this format. A converter called

RDF2RDF30—an open source third party library—has been integrated with the CedT-

Mart for performing conversion. However, we have implemented different techniques

to optimize data conversion performance such as multi-threading. Since data files can

be represented independently by one N3 data file, CedTMart takes the advantage of

using multi-threading to parallelise the conversion process. Each thread instantiates a

FormatConverter class to interface with the environment in which the application is

running, then to run a pre-compiled executable jar file of RDF2RDF.

5.2 Data partitioner and cleaner

CedTMart provides a partitioner that performs two types of partitioning namely, Pred-

icate Partitioning (PP) and Predicate-Object Partitioning (POP).

5.2.1 Predicate Partitioning (PP)

In this step, N3 data is partitioned into predicate files. Currently, the number of distinct

predicates in different ranges from 20 to 30. This indicates partitioning data by predi-

cates can significantly reduce the search space for SPARQL queries which have non-

variable predicates such as, <?x isStudent ?y>. The CedTMart partitioner splits

the files by predicates and it replaces the characters that are illegal for naming files by

unique characters [11]. For instance, all triples containing the predicate p:isStudent

are merged into a single file p-isStudent, in a folder called _ps.

CedTMart relies on parallelism and thus uses multi-threading. Each thread instantiates

a DataManager class, where a function called N3Reader parses each file (line by line)

of a set of N3 data files into CTMTriple. Then the 〈subject, object〉 pairs of the

triples are written into predicate files that are located in a directory (by default it is _ps

directory).

CedTMart provides a Data Cleaner. It is integrated with the N3Reader which au-

tomatically emits the lines with invalid entries to an output directory (by default it is
_invalidTriple folder). Figure 3 and Figure 4 show the flowcharts of the operations.

This leads to a join-like operation. Our approach creates a set of writers: each writer

results in 〈subject, object〉 pairs of one predicate to the predicate’s file. During

the development and test phases, we have found a few interesting issues about the

technologies we used:

• java.nio is a buffer-oriented technology. Therefore, it is used either to access

memory directly or to block mediated bulk data transferring. It does several

other tasks. However, those are related to blocking and non-blocking access.

As such, if we want to use NIO to grab the data quickly (or in a non-blocking

29
http://www.w3.org/2001/sw/RDFCore/ntriples

30
http://www.l3s.de/ minack/rdf2rdf
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Figure 3: Procedure of PS

manner), it is a feasible choice. However, in our case, we read line by line and

process at the same time. Therefore, it would be better if the lines were detected

after NIO had finished reading the available data. In fact, we do not need to

put a line reading facade over the buffer that NIO just read, the I/O can already

provide a nice overall throughput.

• Based on a series of tests, we concluded that BufferedWriter is a better choice

for writing sequential records.

• The writer.close() is computationally expensive method. Its too many close

instructions degrades the performance. BufferedWriter could be an option

to resolve this bottleneck. The key task of BufferedWriter in this case is to

consolidate a large number of small writes into fewer large writes. Although it

is efficient, but painful to implement.

Considering these issues, we choose to use HashMap 〈String, BufferedWriter〉,
where a String acts as a unique key for each distinct predicate’s file name. In this

way, each BufferedWriter is assigned to one distinct predicate parsed from a thread.

Figure 5 shows how each parsed 〈subject, object〉 pair line is put to the buffer of a

BufferedWriterwhich is assigned to a predicate’s filepath.

5.2.2 Predicate-Object Partitioning (POP)

CedTMart’s partitioner carries out predicate object partitioning. The predicate parti-

tioning results in predicate files. For queries having non-variable predicates, the corre-

sponding predicate files are retrieved first and then queries are performed on the files.

However, for those that have variable predicate, all files must be scanned, which will

consume a significant amount of time. The CedTMart adopts an efficient approach

which was found in [11]. This approach determines the types information of objects
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Figure 4: Procedure of N3Reader for each file

Figure 5: Function writeToBigFile
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and add them in the file names. We called this called Predicate-Object Partition (POP).

CedTMart can perform two types of object partitioning:

• Predicate-Object Partition of Type (POPT): In POPT, CedTMart partitions files

by rdf-type of the predicate rdf:type into files rdf-type_c1, rdf-type_c2,

. . . , rdf-type_cn, where c1, c2, . . . , cn are the objects that appear in the files

rdf-type. Each of these files rdf-type_c1, rdf-type_c2, . . . , rdf-type_cn
has only one column which stores subjects of triples having the predicate rdf-

type and the object cn. The purpose of processing the predicate only is to fetch

easily the class hierarchies in ontology applications. It is straightforward be-

cause the leaves are directly stored in the file names. This has an important

advantage. It frees storage space by combining the repetitive objects into a sin-

gle entry in file names.

• Predicate-Object Partition of Non-Type (POPNT): For other predicates, instead

of splitting them by distinct objects, our triplestore classifies them only accord-

ing to the type of objects: Variable, Anonymous, IRI and Literal. This clas-

sification is important for two reasons: it helps to avoid a large amount of pos-

sible distinct objects in modern day’s datasets and it narrows down the search

spaces. A predicate file pred splits into maximum four files, pred_Variable,

pred_Anonymous, pred_IRI and pred_Literal, if it contains all of these four

types of objects. The POPNT method essentially promotes a compromise be-

tween the number of files and the search space in each file.

Predicate-object partitioning of type operations are simple read-and-write operations.

The partitioner reads each predicate file line by line, fetch objects by checking its

type, then create and write lines into different files. For implementation, we used

writeToBigFile() function. However, the loop function parses each predicate file

using the SOReader() in place of the N3Reader because each line in a predicate file

contains only two entries: subject and object. Since invalid triples are already elimi-

nated in PP step, the SOReader() stores directly parsed lines into CTMDouble, which

is composed of a CTMSubject and a CTMObject, to store their type information and

retrieve them while writing into the destination files. Figures 6 and 7 demonstrate

the detailed procedures of predicate-object partitioning and reading the subjects and

objects of triples in files.

5.3 Data compression

The predicate files contain lines with two entries: subject and object. Our goal is

to optimize the query processing performance. It is worth noting that, in addition

to simple SPARQL queries, there are complex queries such as conjunctive multi-join

queries which can cause very large result sets, if the data set is huge. Taking this issue

into account we invested a significant amount of time to find an efficient approach. We

found BitMat [5] that can transform datasets into a compact format, load them onto

main memory then perform bitwise operations on them. Our idea was to minimize the

size of datasets so that data can be load onto memory instead of secondary storage.
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Figure 6: Procedure for Predicate-Object partitioning

Figure 7: Procedure of Subject-Object Reader(SOReader) for each file
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BitMat is a compressed inverted index structure for the in-memory storage of RDF/N3

triples. Generally, it builds a three-dimensional (3D) cube of subject, predicate and

object. In fact, each predicate is represented by a two-dimensional (2D) matrix of

distinct subjects and objects and the line numbers of each dimension corresponds to an

unique literal/concrete entry stored in an index file (see Figure 8).

Figure 8: BitMat representation

Knowing that we have queries with variable subjects and variable objects, instead of

concatenating a single matrix of 〈subject, object〉 pairs, we also store a transposed

matrix if 〈object, subject〉 pairs for each predicate. These two matrices create PSO

and POS indexes. Figure 9 shows an example of these two index matrices.

Figure 9: BitMat S-O and O-S matrices (from [5])

Each triple of a given N3 dataset is a point in the 3D cube. A typical dataset covers

a very small number of points in such a 3D space. Hence, BitMat matrix tends to be

sparse. In order to achieve a compression that can directly be used for query process-
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ing, we have used the D-gap compression scheme.31 The idea is to translate a binary

array to a structure using integer: The very first integer in the sequence is always [0]
or [1]. It works as a flag indicating the start bit. The integers following the flag are the

lengths of the consecutive blocks of equal bits. The sum of all elements of the sequence

without the starting flag value provides the total length of the blocks. For example, the

output for the binary sequence (000 1 000 111 00 1111) is ([0], 3, 1, 3, 3, 2, 4). This

means, it begins with ‘0’ with length 3, then ‘1’ with length 1, ‘0’ with length 3, then

‘1’ with length 3, then ‘0’ with length 2, and then ‘1’ with length 4. The total length

can be easily calculated as the sum of the lengths of the alternating subsequences of

0’s and 1’s; in this case, 3 + 1 + 3 + 3 + 2 + 4 = 16.

The DgapCompressor class generates three files for each predicate: a matrix S-O with

the extension .matrixSO, a matrix O-S with the extension .matrixOS, and an index

Id-Literal with the extension .index. Instead of storing binary huge lines, we

store each line in D-Gap compressed format. Also, we add metadata for the purpose

of statistical analysis. Figures 10, 11, and 12 are examples of the predicate :name,

produced by our preprocessor client.

Figure 10: An example of compressed predicate: some lines in the S-O matrix

Figure 11: An example of compressed predicate: some lines in the O-S matrix

This compressed data structure and a proposed query processing algorithm [5] enable

loading larger datasets into main memory and directly perform queries on compressed

data with an improved overall performance. In order to create an unique index of

31
http://bmagic.sourceforge.net/dGap.html
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Figure 12: An example of compressed predicate: some lines in the index

all tokens or nodes (subjects and objects), the compression can be the most memory-

intensive part in the client program. This step performs the following operations:

• Integer insertNode(String node)—inserts a String token and an unique

integer Id is returned. This is a composed “insert if not exists then select” oper-

ation.

• Integer fetchIdByNode(String node)—fetches the unique integer Id of a

given String.

• Integer fetchNodeById(Integer id)—fetches the unique String of a given

Id.

• void addSO(SOIntegerPair so)—adds an integer pair in a list containing all

nodes in the Subject× Object space where all nodes are 〈subject, object〉
entry pairs represented by their unique integer Id.

• List〈SOIntegerPair〉 fetchSOList()—returns the entire list of points.

The database technologies are used for these operations. We have developed several

methods extending the DBUtils class, using relational or non relational database or

in-memory approaches. For existing database solutions, we have implemented re-

placeable modules giving support to the following:

• MonetDB is an open source column store product under Mozilla open source

License.32 It aims to use the maximum of available memory and cores, which

is practically possible to be deployed in parallel processing of queries. Also,

it tries to avoid storing data onto disc. It has a SPARQL-based component for

working with linked data and allowing users to build simple triplestores.

• MongoDB is an open source NoSQL database under Apache License.33 Its data

storage model is designed for semi-structured data. It stores document-like data

into sets of key-value pairs.

32
https://www.monetdb.org/Home

33
https://code.google.com/p/guava-libraries
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• MySQL and Oracle are two relational database management systems owned by

Oracle.34 MySQL is a free, fast, robust and open source database under GNU

(General Public License). Oracle is more versatile and supports many unique

features, however, it has a large number of tuning options that takes a lot of time

to investigate the right combinations.

• PostgreSQL is an object-oriented relational database system.35 It is similar to a

relational database but with a different model where objects, classes and inheri-

tance are directly supported in data schemas and therefore in the query language.

It is under PostgreSQL License, a permissive free software license like the BSD

licenses.

• Redis is an open source and BSD licensed advanced key-value store.36 It is often

referred to a data structure server since the keys can contain strings, hashes, lists,

sets and sorted sets.

As mentioned earlier, CedTMart provides several alternatives including main-memory-

based database which we have implemented with:

• a bidirectional HashMap using Google’s Guava library:37

– BiMap〈Integer, String〉 which allows two-ways key-value operations

fetchIdByNode(String node); and,

– fetchNodeById(Integer id);

• an ArrayList of integer pairs: ArrayList〈SOIntegerPair〉 describing nodes

in the Subject× Object space.

CedTMart performs compression in two phases: Loading and Computing & Writing.

In the loading phase, like POS step, a thread called loop function is assigned to process

each file of a set of files. In the file processing function, an SOReader reads predicate

files line by line but without detecting the object type. Figures 13, 14, and 15 depict

the compression procedure.

Once the entire file is loaded into the temporary database, the function:

void writeCompressedFormat ( String inFileName

, String outputPath

, DBUtils dbu

, String comparePath

)

in class DgapCompressor is called. At first, it sorts the list of 〈subject, object〉
nodes according to subject elements and produces the outcome S-O matrix. Then

34
http://www.oracle.com/index.html

35
http://www.postgresql.org

36
http://redis.io

37
https://www.monetdb.org/Home
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Figure 13: Compression procedure

it sorts the list according to object elements and outputs the O-S matrix, finally it

iterates the bidirectional HashMap and writes the index file. In this step, as an option,

sorted subjects and objects can be represented as arrays to a compare folder (by default
_compare) for performing comparison at later step. Figure 16 gives a clearer view of

this core function.

During this implementation, we learned how to avoid very long strings by flushing the

buffer of its writer periodically. The JVM can be extremely inefficient even nearly

frozen while processing long strings (for example longer than 128K). In our tests we

have observed that a function without splitting too long strings could never finish (See

Section 6). Also, in some extreme cases (for example predicate a), this method does

not compress at all because our initial assumption become invalid in such situations. If

〈subject, object〉 nodes of predicates are not sparse at all, the D-Gap compression

will not provide satisfying results.

5.4 Comparison

The purpose of the Data Distributor module is to distribute compressed data intelli-

gently across the nodes in Hadoop clusters. In order to do so, CedTMart measures

betweenness among predicates. It calculates the similarity between two predicates,

which refers to the sum of common distinct subjects and common distinct objects

which belong to two predicates. Since it is difficult to perform this computation on

compressed data, we reuse predicate files produced during the predicate-partition step.

The comparison is done in two steps: 1. Pre-Comparison and 2. Comparison. In the

Pre-Comparison step, predicate files are split into two individual arrays of subjects

and objects. Then, they are stored in files:

• predicate_file_name.S, and

• predicate_file_name.O,
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Figure 14: Loading phase procedure for each file

which are located by default in the _compare folder. CedTMart exports the sorted

subjects and objects to the Compression step. Figure 17 shows the Pre-Comparison

step.

In addition to this approach, the CedTMart provides two other alternatives for splitting

predicate files:

• a Java parser-writer using SOReader and writeToBigFile() function.

• a Perl parser-writer using a perl script. It consumes less memory (only 5M in

contrast to almost 200M per thread running the above Java function)

For comparison, several comparing methods have been implemented in CedTMart us-

ing Java subsystems and external scripts. They can be grouped into in-memory and

disk buffered methods. For all in-memory and disk buffered methods, in the loop func-

tion of the Comparison step, a thread always catches a list of FilePair containing

four array files of two different predicates, say A and B. Then, it compares A and B’s

common subjects and objects; and finally, returns a sum storing in a specified indica-

tor file (by default the _indicator folder). Figure 18 shows the process of comparing

subjects and objects in files.

The in-memory compression method InRamUtils can be used if sufficient physi-

cal resource in particular, RAM (Random Access Memory) is available to load each

predicate file containing two columns (Subject and Object). The core function of in-

memory is compareTwoPredicates (File f1, File f2). This function creates

two Future〈HashSet〈String〉〉 instances and submits to each a value-returning task

for execution. It returns a Future instance that represents the pending results of the

task. A Future’s get() method returns task results upon successful completion of

two HashSet〈String〉. The function SmallerSet.retainAll(BiggerSet) is then

executed by the core function, which finally retains the elements in a set. (Note that
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Figure 15: Loading predicate file for comparison

these elements are still contained in another set.) Finally, it obtains a collection of

common subjects or objects. An advantage of the in-memory comparator is that it is

not necessary to sort subjects or objects arrays because HashSet is already hashed into

a unique set. Figure 19 depicts the implementation of comparing 〈subject, object〉
arrays in main memory.

The CedTMart preprocessor client provides multiple combinations of various solu-

tions. These are summarized as follows.

• The in-memory comparator (class InRamComparator). It does not need to sort

the input arrays of 〈subject, object〉 pairs. However, it is the most memory

hungry approach.

• The Java comparator (class JavaComparator), which contains the function

compareTwoPredicates(File f1, File f2). It compares strings line by

line and thus is available for sorted files only.

• The Perl comparator (class PerlComparator), which calls a ProcessBuilder

instance to manage a collection of process attributes and to create a new Process

instance with those attributes in order to run an external Perl script using the

start() method.

Since two disc buffered methods (Java and Perl) can only take sorted arrays as inputs

to calculate distinct common subjects and objects, in the current version of CedTMart,

we use GNU’s sort executable to sort text files.38

38
http://www.gnu.org
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Figure 16: Procedure for computing and writing phase for each file

Figure 17: Flowchart of the Pre-Comparison step

5.5 Distributor

The purpose of this component is to distribute compressed data with index to clusters

of nodes in particular, Hadoop clusters. The Data Distributor contains a data distri-

bution client. Also, it relies on a set of protocols which we have implemented in this

project. It transfer data over socket. The protocols are explained below. It is worth

noting that the distributor has been implemented considering Hadoop’s master-slave

architecture. Figure 20 shows data distribution.

• The client connects with a node (this should be the namenode) on a given ad-

dress and a specified port (predefined by the user) and announces the amount of
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Figure 18: Comparison of files

Figure 19: Comparing two 〈subject, object〉 arrays in main memory

compressed data that will be sent to other nodes (these are compute nodes). This

is a string message with message’s length and a header of 8 bytes.

• The namenode checks the free spaces available on computing node(CN) and

sends a formatted JSON string back to the client (see Figure 21). The String

contains amount of free space, IP address, and port of each available compute

node, and maximum size of data blocks to be sent (default value is 512MB). The

IP and port information are used to establish the connection between client and

each CN. Then, the client sends data to CNs according to free_space (in MB)

and ratio.

• The client disconnects from the namenode once it receives a valid response.
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Figure 20: Illustration of data distribution across nodes

Figure 21: JSON response for DN

• CedTMart client distributes data in two ways: strategically or randomly. For

strategic distribution, it uses the outcome of comparison operation. In the func-

tion distribute() of the main thread (CTMServer), the client looks for valid

indicators in the _indicator folder. Then it assigns compressed predicate files

to a number of groups according to the betweenness indicator. The client choose

random distribution if there is no indicator found. In this case, the client dis-

tributes data randomly based on the information of available compute nodes

returned by the namenode.

• The client creates a predefined number of threads. Each opens a connection

to a list of different nodes and sends chunks of data with the predefined size

these nodes. To explain more, for each compressed predicate file, each client

thread opens the socket to the node that it wants to contact and then begins send-

ing data. If the data file is smaller than the maximum block size, the entire

data chunk is sent with the header: DATA:N〈filename〉 ||-||. An acknowledge-

ment DATA:ACK; is sent in response. It indicates the successful transfer of data

blocks. If the data chunk is bigger, it is split into chunks and sent with the

header PATA:N〈filename〉, P〈size_of_chunk〉 ||-||. Figure 22 presents the

data transfer protocol.

Note that, currently, in CedTMart, data can be transferred as simple string and are not

be encrypted. We plan to implement a data security mechanism in future.
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Figure 22: Connection sequence between client, DN, and a CN

We have implemented a component to enable the client using HDFS [29] for data

distribution (see Figure 23). HDFS is designed to store large files typically, in the

range of gigabytes to petabytes across multiple machines, which is the relevant size of

our generated data. It ensures reliability by replicating the data across multiple node

machines. For example, with the default replication value 3, it stores the data on three

nodes within which two on the same rack and the other on a different one. Compute

nodes communicate with each other to maintain the load balancing, to move copies

and to keep the data replication.

In this alternative, the distributor deploys compressed predicate files to Hadoop clus-

ters. This will use Hadoop Java API which solves automatically low level protocols:

the HDFS uses the TCP/IP layer for communication and clients use Remote procedure

call (RPC) to communicate between each other.

5.6 Query processing

Lately, we have finished the implementation of query optimization module that com-

prises Query Planner and Query Executor. These components rely on two algorithms

that we have designed in this research project. Since are still debugging the implemen-

tation, we decided to detail the implementation in the next report.

6 Evaluation

We have conducted several experiments with the current version of CedTMart pro-

totype. In this section, we present the results of the experiments. We evaluate the

performance of preprocessing and distribution modules of CedTMart and compare our

framework with others. Before going into details, we provide a description of the

parameters that are needed to operate the CedTMart prototype.
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Figure 23: A simple illustration of HDFS

6.1 Parameters

CedTMart is designed to run in command line interface. The users can directly run

the executable .jar file. Once it is executed, the preprocessor program prepares itself

using all default values. If users want to load some modules with external scripts or

external executables; these required elements which should appear in:

• the exec folder besides the main jar executable, for all executable programs and

jar executables;

• the script folder besides the main jar executable, for all external Perl and Shell

scripts.

Note that, the input datasets are always prerequisite. The default value for RDF

datasets is __rdf, and for N3 datasets is __n3. If no arguments detected by the main

function, the client will show a menu which asks to choose an operation. Figure 24

shows the menu provided by the CedTMart.

The default number of worker threads is 4. The menu enables users to define different

value of number of threads for each operation. The jobs will be assigned to the number

of threads (see Figure 25).

If an error value is detected, the CedTMart will run using its default values. Figure 26

shows the default values.

It is worth noting that users can specify easily all these parameters by modifying values

in the configuration section. The options are listed below:
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Figure 24: A demo without argument: choose a task

Figure 25: A demo without argument: number of threads
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Figure 26: A demo without argument: number of threads

• setLogging(boolean, boolean): the first boolean informs the logger to out-

put log messages to the console or not, and the second informs the logger to

output to an automatically created log file or not;

• nbThreads: number of worker threads;

• compressMode: it defines a mode for the compressor, perhaps needs external

DB support (see Section 5.3);

• writeprecompare: it informs the comparator to write sorted subject/object files

of each predicate or not (see Section 5.3);

• precompareMode: it defines a mode for the pre-comparator, perhaps needs Perl

executable in PATH environment variable;

• compareMode: it defines a mode for the comparator, perhaps needs Perl or GNU

executable in PATH environment variable;

• ctlParams: it stores input and output paths for RDF to N3 conversion, PP, POP,

compression, pre-comparison, comparison and only input source for distribution

(because the program receives destination information by requesting a manager

node in a distributed environment)

Once an user performs a specified operation, all concerned parameters are displayed

on the screen. This ensures that the source to destination has been processed correctly.

6.2 Experiment

In our experiment, we use two physical machines with the following specification:

• Machine 1

– I7 960 quad core processor with Hyper-Threading Technology,

– 16GB main memory

– 1TB Seagate 7200.12 hard disk (HD)
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Figure 27: Display all paths

• Machine 2,

– I5 3320M dual core with Hyper-Threading Technology,

– 16GB main memory,

– 180GB Intel 530 solid state drive (SSD)

In the following subsections, we show individual results for our experiments of dif-

ferent tasks. Two smaller datasets, 26MB and 2GB are used during implementation

phase to ensure the correctness of our data processing, and a bigger dataset of 20GB

containing 23000 N3 files is used for experimental results.

For each result, we performed five experiments. Then repeatedly removed the pair

consisting of the highest and lowest values and got the average of three left scores.

6.2.1 Results of predicate partitioning

In this experiment, the 20GB dataset is merged into 17 predicate files which are equal

to 15.6 GB. We record the elapsed time for the program running with 1, 2 and 4 threads

on machine 1 and machine 2 with the optional merging operation which combines

output files of each worker thread in 17 distinct predicate files. The test results range

from 188 seconds to less than 2000 seconds based on different configurations. Table 1

shows the performance comparison for our test cases respectively.

In this I/O intense phase, the size of main memory do not influence much. The memory

usage stay around 50-100 MB per thread. Also, we tested using 8 GB main memory

in Machine 2 but we did not notice any difference. Limited by the bottleneck of local

I/O performance, the solid state drive is more efficient. It takes only 1/10 of elapsed

time than hard disk.

6.2.2 Results of predicate-object partitioning

In this experiment, the 15.6 GB of 17 predicate files is converted to 30 files and 15.1

GB. The results of different settings range from 260 seconds to 1050 seconds. Table 2
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Table 1: PP using various settings

Machine 1

Operation Number of threads Elapsed time in second

Partitioning 1 1501

Partitioning 2 1925

Partitioning 4 1933

Merging 1 320

Machine 2

Operation Number of threads Elapsed time in second

Partitioning 1 392

Partitioning 2 248

Partitioning 4 188

Merging 1 141

shows the results for different settings respectively.

Again, limited by the bottleneck of local I/O performance, we observed significant

improvement of processing time when the number of threads increased from 2 to 4.

The processing time of Machine 2 (which has SSD for storing data) is always inversely

proportional to the number of worker threads. It is worth noting that fragments in hard

disks affect the benchmark for 5 to 30 percent, for example, 4 threads can take over

than 1350 seconds without defragmenting periodically the hard disk in Machine 1.

6.2.3 Results of compression

We performed compression operation in this experiment. We used both local file sys-

tem (FS) with main-memory and the database technologies. Our triplestore provides

both of these modes to perform compression. The outcomes of in-memory compres-

sion test is presented in Table 3.

Table 4 shows the the outcomes of the experiments with database technologies using

Machine 1.

Due to huge memory consumption per thread, we performed tests with single thread

only. We found that the compression rate varies between 10% and 95% depending on

predicate files. It is worth noting that we found data compression a CPU bound job.

In the beginning we often encountered java.lang.OutOfMemoryError error with

a message called GC overhead limit exceeded. Figure 28 shows the JVM memory

structure.

The JVM memory structure is divided into three parts. The Heap Memory is also

called the dynamic memory, where programs store new objects or variables. Two other

July 2014 Page 35 / 43



CHEN, M.; HAQUE, R.; HACID, M.-S. CedTMart

Table 2: POP using various settings

Machine 1

Operation Number of threads Elapsed time in second

Splitting 1 1050

Splitting 2 979

Splitting 4 1108

Machine 2

Operation Number of threads Elapsed time in second

Splitting 1 424

Splitting 2 327

Splitting 4 261

Table 3: In memory compression using various settings

Operation Number of threads Elapsed time in second

Machine 1

In memory compression 1 1053

Machine 2

In memory compression 1 1120

Table 4: Compression using database technologies

Databases Time Elapsed (in second)

Redis 1042

MonetDB 1043

PostgresDB 1044

Oracle 1045

MySQL 1046

MongoDB 1047
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Figure 28: Java VM memory structure

parts represent the Stack Memory where only the values are stored within the scope of

the function they are created in. We observed 99% memory consumption for storing

temporary objects in complex data structures for example, large HashSet of strings.

The -Xmx〈size〉 was set the maximum Java heap size and the -Xms〈size〉 was set for

the initial Java heap size. If the free heap size would be smaller than 40%, JVM would

increase the size to Xmx threshold. If free heap size would be larger than 70%, JVM

would decrease the size to Xms threshold. In some circumstances like many Java WEB

servers, when we know clearly how much main memory our programs use, we can

set a same value to the initial and maximum size purposely, in order to avoid pauses

caused by resizing the heap zone.

Another important issue is the GC (garbage collector) which is a daemon thread in-

vokes finalize() method of eligible objects (basically those objects linked with any

other object) and removes them. While experimenting our triplestore with Oracle we

found that if 98% of the total time was spent in garbage collection and less than 2% of

the heap is recovered, an OutOfMemoryError was thrown. Thus, during the tests, we

used -Xms12288m -Xmx12288m -XX:+UseConcMarkSweepGc arguments for the Java

VM to maximize the heap size. Additionally, the JVM was instructed to disable the

error check altogether then we did it ourselves.

In the experiment using local FS with in-memory compression mode, the worst case

is, a predicate file of 4GB can use 9GB main memory. In some extreme cases, there

may have very long string in generated matrix files which should be avoided. We

discussed of such cases in the earlier section. Taking these cases into account, in

addition to in-memory compression, CedTMart enables using existing relational or non

relational database systems. It is worth noting that queries such as insert, ignore, return

should be performed in large tables with two unique columns: one integer and the

other is string. For the relational database systems, generally, MySQL with MyISAM

engine provides better performance than with InnoDB and PostgreSQL. Additionally,

Oracle with parallel query execution can provide significantly better performance than

MySQL with MyISAM. However, it has a large number of tuning options which pose

enormous challenge especially in finding the right tuning combinations. MonetDB is

a special one using column storage. To load a large table of over than 1GB, MonetDB

can take 150% more time than MySQL, but its query time has substantially better

than MySQL or even Oracle. Among tested NoSQL databases, Redis key-value store

performs much better than MongoDB. We used the Jedis library with two modes:
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Table 5: Redis Insert and Get results

Operation Quantity Elapsed time in second

Standard

insert random string value of 64 bytes 1000000 255

get value using random integer keys 1000000 >1000

Pipeline

insert random string value of 64 bytes 1000000 6

get value using random integer keys 1000000 107

insert random string value of 64 bytes 32000000 97

get value using random integer keys 32000000 >1000

standard and pipeline.39 The outcomes of compression using Redis is presented in

Table 5.

In Redis, most of the time was spent on fetching values. Note that, Redis is also an

in memory database. According to its official documentation, Redis loads everything

into memory. The data written to disk as well however would only be read for special

purposes such as restarting the server or making a backup. In our tests, 32 Million lines

occupy 6GB of main memory. We found that a bidirectional Mapping is needed to

improve the performance of compression operation using database technology. Redis

is an ideal option for that.

Our observation concludes that the local FS with in-memory mode is better than the

traditional database solution for performing high performance compression operations.

6.3 Results of comparison

In this experiment, 17 predicate files are split in 17*2 files of separate subjects and

objects, then a comparator counts common subjects and objects between each pair of

two distinct predicates. The comparison outcomes are presented in 6.

Like compression, this is a I/O intensive task. From the table it is clear that the Java

splitter performs better than the Perl splitter yet it consumes more memory. In addition,

we observed that the memory usage of Java BufferedWriter and Perl’s writer increase

if the faster storage such as SSD is used.

In order to optimize the performance, we used GNU’s sort for sorting files of subjects

and objects. The total time consumed for completing this step is 75 minutes using

single thread. We then increased the threads. Using 8 threads the comparison of 20GB

dataset was completed in 1000 seconds.

The comparison module of CedTMart has three classes of solutions. Each of them

use less than 100 MB of memory (per thread). The first solution comprises two Java

39
https://github.com/xetorthio/jedis
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Table 6: Pre-Comparison split using various settings and alternatives

Machine 1

Operation Number of threads Elapsed time in second Memory usage

Java split 1 1083 198MB

Java split 2 1016 403MB

Java split 4 977 767MB

Perl split 1 1002 4MB

Perl split 2 1054 9MB

Perl split 4 1249 17MB

Machine 2

Operation Number of threads Elapsed time in second Memory usage

Java split 1 205 254MB

Java split 2 151 509MB

Java split 4 120 1027MB

Perl split 1 356 5MB

Perl split 2 252 11MB

Perl split 4 209 22MB
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Table 7: Comparison using Java and GNU alternatives

Operation Number of threads Elapsed time in second

Java comparison 1 11317

Java comparison 2 6216

Java comparison 4 3789

GNU comparison 1 39712

GNU comparison 2 21988

GNU comparison 4 13465

methods: the in-memory HashSet-based algorithm and file comparator for sorted files.

Second, the GNU’s comm technique which compares two sorted files line by line. The

third solution is the Perl script which essentially spends more time than the GNU’s

comm. Table 7 shows the results.

We found that, in the current version of CedTMart, comparison consumes most of the

time. Also, optimizing the performance of comparison operations was more challeng-

ing than others. We believe that there is a scope of improving this component, which

we will be doing in future.

7 Conclusion and Future Work

In this research project we developed a high-performance triplestore for storing and

querying Blinked Data. We implemented components: a data cleaner, a data parti-

tioner, a data compressor of the preprocessing module. We implemented data a re-

partitioner, a data organizer, and a data distributor of distribution module. Addition-

ally, we recently finished the implementation of a query planner and a query executor

of query execution module. We designed several high-performance algorithms.

We conducted several experiments. The experiments show that significant improve-

ment of CedTMart’s performance in some cases. However, there are bottlenecks that

have to be addressed to enhance the current performance. For instance, the main-

memory based module of compression step is the most memory-intensive one, and

other solutions using existing database systems cannot provide a same performance.

The jobs in the database systems generate additional costs like indexing, redundancy,

network traffic, etc., . . . Column based and some key-value data stores seems more

suitable for the compression. However, many of them are implemented as an in-

memory architecture and takes almost the same size of the Java-based solution. Fur-

thermore, the comparison with sort operation is more CPU intensive. We are working

on to reduce consumption of computing resource and to enhance performance.

In the future, we plan to experiment with the query processing module we recently

implemented. Also, we plan to work on improving the algorithms to enhance the

current performance of each module of the CedTMart independently of one another.
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We will continue this agile development protocol until we reach the performance we

seek.
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