
✬

✫

✩

✪

C E D A R

Technical Report Number 8

A Cache Only Memory Architecture for Big Data
Applications

Tanguy Raynaud and Rafiqul Haque

July 2014

Publication Note

This report is based on the work done by Tanguy Raynaud during his internship in

the CEDAR Project toward the obtention of his MSc degree at the Université Claude

Bernard Lyon 1, on a topic proposed by, and under the supervision of, Dr. Rafiqul

Haque [11].

Corresponding Author:

Akm Rafiqul Haque

LIRIS - UFR d’Informatique

Université Claude Bernard Lyon 1

43, boulevard du 11 Novembre 1918

69622 Villeurbanne cedex

France

Phone: +33 (0)4 27 46 57 08

Email: akm-rafiqul.haque@univ-lyon1.fr

tanguy.raynaud-gallonet@etu.univ-lyon1.fr

CEDAR Project’s Web Site: cedar.liris.cnrs.fr

Copyright c© 2014 by the CEDAR Project.

This work was carried out as part of the CEDAR Project (Constraint Event-Driven Automated

Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1 (UCBL). It may not be

copied nor reproduced in whole or in part for any commercial purpose. Permission to copy

in whole or in part without payment of fee is granted for non-profit educational and research

purposes provided that all such whole or partial copies include the following: a notice that

such copying is by permission of the UCBL, with an acknowledgement of the authors and in-

dividual contributors to the work; and all applicable portions of the copyright notice. Copying,

reproducing, or republishing for any other purpose shall require a license with payment of a

fee to the UCBL. All rights reserved.

http://cedar.liris.cnrs.fr

CEDAR Technical Report Number 8

A Cache Only Memory Architecture for Big Data
Applications

Tanguy Raynaud and Rafiqul Haque

tanguy.raynaud-gallonet@etu.univ-lyon1.fr, akm-rafiqul.haque@univ-lyon1.fr

July 2014

Abstract

Distributed architecture is widely used for storing and processing Big Data. Op-

erations on Big Data need first,locating the required data blocks and then, read

them. Reading data from secondary storage to process Big Data jobs is not an

ideal approach especially for high performance applications. Because, the pro-

cessors cannot access data faster if they are stored in secondary devices. In ad-

dition, fetching data from main memory is time consuming due to limited I/O

bandwidth. Therefore, to optimize the application performance, it is not suf-

ficient to have efficient algorithms only, an efficient architecture is needed to

provide faster data access to the processors. The need for such an architecture

has been a research issue for a long-time, however, the state-of-the-art is still

missing one. This paper develops a promising architecture which caches data in

main memory. It essentially transforms a main memory into a attraction memory

which enables high-speed data access. Also, it enables automatic migration of

data blocks and computations across the nodes contained in the clusters. It offers

an exchange protocol for fast transfer of data blocks between the different phys-

ical nodes and speeds up job processing. The proposed architecture combines

the power of Cache-Only Memory Architectures (COMAs) and the structural

principle of Hadoop.

Keywords: Cache Only Memory Architecture, Big Data, Attraction Memory

Table of Contents

1 Introduction 1

2 Motivation 2

3 Related Work 2

3.1 Shared memory abstraction . 2

3.2 Memory access . 3

3.3 Cache coherence . 4

3.4 The Data Diffusion Machine (DDM) . 5

3.5 The Hadoop Distributed Filesystem (HDFS) 6

4 The Design of CedCoM Architecture 7

5 Development of CedCoM Architecture 9

5.1 Basic concepts . 9

5.1.1 Data structure . 9

5.1.2 Network communication . 9

5.1.3 Connection management . 10

5.1.4 Replication management . 11

5.1.5 Serialization . 11

5.1.6 Configuration . 11

5.1.7 Client connection . 12

5.2 Core components . 12

5.2.1 The compute-nodes . 12

5.2.2 The directory-node . 17

5.3 Advanced operations . 23

5.3.1 Block transfer . 23

5.3.2 Block creation . 24

6 Experimentation 25

6.1 Experiment setup . 26

6.2 Discussion . 28

7 Conclusion and Future Work 28

RAYNAUD, T.; HAQUE, R. COMA for Big Data

1 Introduction

Data is becoming bigger everyday. Today, its size ranges from Gigabytes (GBs) to

Petabytes (PBs). It has been predicted by many such as Zikopoulos et al. [14] that the

data size will reach to Yottabytes in future. The rapid increase of data has given the

rise to several problems related to computation (e.g. processing a job), predominantly,

efficient access to mammoth size datasets. Time more specifically time to access data is

the critical attribute because it determines the efficiency in terms of processing jobs on

Big Data. In Big Data researches specifically in literature, importance has given to the

underlying algorithms such as query processing algorithms. They have been heavily

investigated and improved for querying Big Data efficiently. The system level issues

such as high-speed data access and fetching them to CPU cache in case of cache miss

are important as well, yet overlooked in existing technologies. A cache miss refers to

an unsuccessful attempt by a CPU to read or write a data block in its cache.

In a distributed environment, efficient management of memory that stores data as

blocks is of critical importance. In this environment, different variants of times are

critical and as such determine the performances of applications. For instance, access

time to a desired data block is a critical attribute. It is composed of time to locate

data blocks and time to load data to main memory from the hard disk. These two in

addition to others such as query execution time determine the efficiency of Big Data

applications. The delay to locate data blocks or load data can degrade the performance

significantly.

Furthermore, accessing data stored on secondary devices is time-consuming. In fact,

even the disks with the fastest RPM (rotation per minutes) consume a significant

amount of time to read or write data to the secondary devices. Therefore, it is highly

unlikely that a high-performance application would be able to perform jobs efficiently

using disk-based system architecture. The conventional in-memory based architecture

could be an option to accelerate processing time. However, it is not a suitable option

for the applications which process real-time queries. The key reason is the limited I/O

bandwidth. In addition, the size of main memory available in the market is an obvi-

ous limitation. Although, the technologies such as Virtual Shared Memory [13] are

available to deal with the size problem, the communication overhead and complexity

of cache coherence can never be ignored. Taking all these facets into account, we con-

clude that an efficient system architecture for supporting the Big Data applications is

missing.

Our main interest in this research paper lies at the system layer. Our objective is

to develop a high-performance architecture called ‘CedCoM’ (CEDAR Cache Only

Memory), which will enable efficient data processing by making data access faster for

the processors and therefore, by increasing the cache hit ratio. The proposed archi-

tecture combines the power of Cache-Only Memory Architectures (COMAs) and the

structural principle of Hadoop. It aims to solves two major problems. First, avoiding a

systematic access to secondary storage when the processors have to execute a job and

finding an effective and efficient way to provide access to all necessary data blocks to

a machine. Second, enabling migration of data blocks from one node to another dy-

namically when required. It is worth noting that, the ultimate goal of the architecture

July 2014 Page 1 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

is to support high-performance query processing on Big Data.

The remainder of this technical report is organized as follows. In Section 2 we de-

scribe the motivation of this research. Section 3 presents the related works that have

been done so far. A high-level overview of the CedCom architecture is presented in

Section 4. Section 5 describes the development of the architecture. The experiment

and results are presented in Section 6. The final section provides a conclusion and the

outlook of this research.

2 Motivation

There are many efficient query processing algorithms. In distributed databases, effi-

cient algorithms play an important role to identify and efficiently query a specific block

of data. However, reducing time to access physical data is not within the scope of these

algorithms. In addition, these algorithms are not concerned of time to fetch data from

secondary storage or memory to CPU cache. However, as said in Section 1, these

temporal attributes heavily influence the overall performance of Big Data applications.

Since applications are mostly I/O bound and processors are more powerful than mem-

ory, guaranteeing high-speed access to data is of paramount importance. If access time

could be reduced, the application could be able to process jobs e.g. queries on Big

Data with high-speed. This would essentially solve the problem related to processing

realtime queries efficiently on Big Data.

3 Related Work

This section discusses the works related to system architecture and memory manage-

ment which are mainly used in the area of distributed, parallel, and high performance

computing.

3.1 Shared memory abstraction

There are different ways to share data between multiple computers. They are described

as follows:

• Virtual shared Memory (VSM): This term is commonly used to describe the sys-

tems which provide a shared address space by using hardware assistance [10].

The virtual memory is implemented on top of this shared address space.

• Shared Virtual Memory (SVM): Unlike VSM, SVM describes a system which

provides a shared memory with a software implementation on top of the op-

erating systems (OSs) [10]. This architecture employs a MMU (Management

Memory Unit) to provide coherent shared address spaces. Unfortunately, this ar-

chitecture is not OS transparent because it uses specific operating system func-

tions to share memory with other processors.

July 2014 Page 2 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

• Distributed Shared Memory (DSM): It is another memory architecture that al-

lows accessing shared data, without replication. Since replication is beyond the

scope of this architecture, it is not concerned of data coherence. Consequently,

the memory address spaces have to be explicitly managed by the user. This is

one of the reasons this architecture has not been adopted in many systems.

• Cache Only Memory Architecture (COMA): In COMA the memory organization

is similar to Non-Uniform Memory Access (discussed in the next subsection).

However, instead of storing data in a fixed location, COMA uses the storage

spaces of different processors as a large cache [4] called attraction memory. It

enables accessing these blocks by processors faster than other memory architec-

ture such as SVM. Additionally, compared to NUMA (which enables storing a

block of data using a unique address and copying it in all the processors’ caches),

COMA stores the blocks only once and migrates them dynamically whenever a

processor require them. COMA reduces data copies to many processors. How-

ever, in COMA, a block can be duplicated in some specific cases for instance,

data required by two or more nodes at the same time. COMA caches data in main

memory, which can significantly promote the performance of data retrieval be-

cause the access time required to load data from secondary storage is eliminated

in this architecture [9].

3.2 Memory access

Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA) are the

two widely known techniques for accessing data in the memory. They are described in

the following:

• Uniform Memory Access: In UMA, accessing data depends on a single bus and

all the processors share the physical memory uniformly [4]. This essentially

means that the data is stored in a location (often a centralized server) that is

accessible by all processors uniformly. This architecture is effective when many

clients need to share data, yet it is insufficient for Big Data applications. The

key reasons are two-fold: the data size often exceeds the capacity of a single

server and the nodes need a permanent access to data, which may cause network

congestion.

• Non-Uniform Memory Access: In NUMA, the memory is divided between the

different processors, and each block has a fixed location. The processors will

access their local memories, which is faster than a remote access [4]. This ar-

chitecture does not help in data migration; more specifically, the data blocks do

not move even if needed. The only way making data available to the processors

is to have a copy in the local cache of the processors. This architecture needs an

efficient cache coherence protocol to guarantee consistency of the data blocks.

July 2014 Page 3 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

3.3 Cache coherence

A distributed system comprises one or more clusters. Typically, each cluster consists

of multiple physical nodes that can contain several processors. While running, if a

processor needs a block of data, it is copied to its cache. Consequently, a large num-

ber of copies of data blocks are diffused within and across the physical nodes of a

cluster. These copies must be consistent to avoid any dirty read (incorrect data). If

no write operation is performed, the blocks remain consistent without requiring any

management tasks. However, in case a data block should be changed, the copies of the

corresponding block needs to be updated to keep them consistent to the latest version

of the data block.

Different methods to maintain data consistency in a distributed architecture already

exist. This section briefly describes some notable protocols used for preserving data

consistency.

The Write-invalidate protocol relies on write-once read-many principle. It allows only

one write operation at a time, however, it allows multiple read operations. When a

node updates a block, it sends an invalidate signal to all the nodes that have the copy

of this block and write new data in the block. The other nodes then flag their copies as

obsolete and remove them. If the copy is needed for computation, the requesting nodes

request a copy of the new block directly to the one that performed the update [10]. The

main advantage of this protocol is that the data is not broadcasted when an update

occurs. Additionally, it allows recovering data progressively.

In Write-update protocol, the node which performs an update sends the data to all

nodes which have the copy of that block [10]. This instantly guarantees usability of

the data blocks, because all blocks residing in the nodes are essentially up-to-date. This

protocol is hard to apply in large networks because it generates heavy traffic, which

can quickly saturate the connection.

Between these two protocols Write-invalidate is more suitable for a large architecture

where data is cached by a wide number of processors simultaneously. Whereas, the

Write-update is preferable to those where data are not frequently cached, yet faster

access is required. The systems which rely on central memories (as opposed to attrac-

tion memories) use one of these two protocols. Essentially, they can be integrated to

complement the previous protocols to determine the updates in the central memory.

The write-through approach updates the central memory each time an update occurs.

In write through systems, the main memory is always up to date [10]. The other

approach is called write-back which does not synchronise the main memory of a node

at once [10]. Rather, the other processors contact the node having the latest copy of the

block. Additionally, this protocol updates main memory if the data block is removed

from the cache. This protocol avoids unnecessary accesses to central memory, which

is particularly useful for the architectures where data is often changed.

There are some advanced protocols that optimize updates during write operations.

Write-once is one of them. This protocol introduces several states (namely not mod-

ified, possibly shared, and reserved) of operations performed on memory pages. It

reduces the overall bus traffic by performing the write-update operation during the

first write, and then it carries out write-invalidate operation [3] [10].

July 2014 Page 4 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

However, the protocols presented above are not suitable for multi-bus architectures.

Thus, a special type of cache coherence protocol called directory based cache co-

herence [1] was introduced for these architectures. This protocol employs specifics

directories for maintaining coherence between caches. When an entry is changed, the

directory either updates or invalidates the other caches with that entry.

In the full map directory architecture, the directories contain a list of processors present.

A single bit is used for each of them to know whether or not a processor contains dif-

ferent blocks [1]. In this architecture, when a cache miss (it refers to unavailability of

data in cache) occurs, the processor can contact any directory to locate the data block.

Additionally, for each update, all the directories must be updated. For this architecture,

the size of directories are very important, because each of them stores the information

about all the processors.

Another approach called limited directory is nearly the same as full-map directories,

except for the fact that, in this architecture, the directories are not storing all the system

entries. Rather, only a limited number of parts are stored. This solution reduces the

storage space that is required by the directories, while it limits the number of blocks

which can be cached simultaneously.

Finally, the chained directory distributes the directory between the different caches.

This approach addresses the size problem of directories without restricting the number

of shared block copies. Chained directories keep track of shared copies of a particular

block by maintaining a chain of directory pointers.

3.4 The Data Diffusion Machine (DDM)

The Data diffusion machine is a multiprocessor memory architecture based on the

COMA principle. The data is stored in different attraction memories, each of them

is associated with a processor. When a block of data is needed by a processor, it is

migrated from the source attraction memory location to the target location [10].

In DDM architecture, nodes are not explicitly interconnected, however, communicate

with each other using a hierarchical system of directories. Figure 1 shows the archi-

tecture of DDM.

The directories store information about the data blocks that are stored in the leaf

nodes [4]. The data is stored in set-associative memories. This approach enables

the directories to locate data blocks efficiently.

Various directories of this architecture contain input/output buffers, which enable stor-

ing intermediate results while transferring data from source to target locations.

DDM provides a shared memory abstraction that encapsulates the underlying mecha-

nisms and provides users a subset of the total distributed data in timely manner.

The main challenge of classical hierarchical DDM architecture is high-traffic, which

may go out of control when too many data blocks are migrated at the same time. It can

cause read and write buffers overflow, and can lead to a congestion and slow the block

transfer significantly.

Several solutions have been proposed to resolve this problems. One of them is to

use routers for an optimized transfer of data block between different directories [8].

July 2014 Page 5 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Figure 1: A hierarchical 3-level DDM

Another approach is called Horn DDM and essentially connects the physical nodes

using a bus based point-to-point communication system [6]. This reduces congestion

because the data can use different paths to be transferred between the nodes, however

this approach increases the number of intermediate nodes.

3.5 The Hadoop Distributed Filesystem (HDFS)

The Hadoop Distributed filesystem (HDFS) is a distributed file system based on a

principle of splitting a large-scale data set into many blocks and then distributing them

among hundreds of thousands of nodes. Each node contains a number of blocks that

represent parts of the data [12]. The file system is distributed, scalable and portable. It

is able to store a huge amount of large files ranging from Gigabytes or Petabytes to a

distributed style machines [13].

Hadoop comprises two layers. At the lowest layer, the data/slave nodes reside to store

data files whereas the top layer contains a node, called NameNode. This node contains

mainly the Metadata.

The main role of the Namenode is to manage data within a cluster. It stores the com-

plete list of files and the list of data blocks. In addition, it creates a hash-map index to

store information about the data blocks contained in specific nodes.

In HDFS, the data nodes (also called slave nodes or compute-nodes) store actual data

and perform computational tasks. In order to inform the Namenode about their sta-

tus, the data nodes regularly (by default, every 3 seconds) send a report containing

July 2014 Page 6 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

meta-information about their blocks and their memory space [12]. The data-nodes

can communicate between them to balance data load, move a copy of a data block, or

replicate it.

In order to increase the reliability, HDFS rely on fault tolerant technique. This tech-

nique avoids the risk of data loss which can be a consequence of crashing a node in

clusters. In addition, to guarantee fault tolerance, in HDFS, the data blocks are repli-

cated on different data nodes. If a data node crashes, the data contained within it

would remain available in the cluster. In the case of namenode crashing, it starts a new

replication from another node which contains a copy of the lock blocks. Furthermore,

HDFS includes a secondary namenode as a backup node [13]. Its role is to create a

snapshot of the namemode with an interval, which essentially supplies the information

of the old namenode to the new one.

In HDFS, there is a component called HDFS client that enables users to load their

data to the file system. The client contacts the namenode to obtain information about

a storage location. Then the client opens connections with data nodes and sends data

blocks. To ensure the fault tolerance, the blocks are replicated to data nodes.

4 The Design of CedCoM Architecture

This section presents our CedCoM architecture which combines the feature of COMA

and Hadoop. It is worth mentioning that, it adopts the structure of Flat COMA (COMA-

F). We adopt COMA-F because unlike the conventional hierarchical COMA (e.g., the

HORN DDM [4]), in this the data nodes are interconnected and can potentially com-

municate with each other directly using point-to-point network [6]. Additionally, like

Hadoop, our architecture is capable of distributing data across the nodes which com-

prise clusters. However, unlike Hadoop, data is stored in attraction memories. These

memories are physically located in main memory and logically implemented as cache

memories. In CedCoM, there is no notion of main memory because it is transformed

manly into attraction memories. Figure 2 shows the CedCom architecture.

The architecture comprises directory-nodes and compute-nodes (Note that, we use the

terms compute-node and data node interchangeably). A compute-node consists of pro-

cessors, conventional cache memory, and main memory. Figure 2 shows that the larger

portion of the main memory of the compute-nodes is transformed into attraction mem-

ory. The size of attraction memory is predefined by users. In addition, the remaining

portion is called transit area. Furthermore, the CedCom architecture allocates a cer-

tain amount of memory for storing a directory (Dir, shown in the above figure). It

is worth noting that the CedCom architecture provides flexible space management for

transit areas and directories.

The data blocks that are needed to execute a job by a compute-node are not necessarily

stored on the same node. Since the CedCoM architecture relies on COMA, data blocks

do not need a particular home node. Any compute-node can contain any data block. If

a block is required by node but stored in another node, the target node contacts source

node and then the block is migrated from the source to target node. However, in case

of large size data blocks, our architecture enables transferring computations to the

July 2014 Page 7 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Figure 2: The Architecture of CedCom

target node, in lieu of the required blocks. This is a substantial feature of the proposed

architecture. The key idea is to reduce the delay which can be the result of high traffic

that would be created due to an exhaustive number of interactions between the nodes.

Transferring computation to the data hosts would avoid communication between the

nodes and eventually would ensure faster job processing.

The architecture contains a local directory which indexes the data blocks stored in the

local attraction memory. The attraction memory contains the data blocks. The transit

area contains the least recently used (LRU) data blocks that are moved out from the

attraction memory. Also, it temporarily stores the data blocks that are about to be

migrated or copied to other compute-nodes.

In addition to main memory, the CedCom architecture enables storing data blocks

onto secondary storage (e.g., Hard Disk) on special conditions. For instance, there is

no space in the attraction memory of any of the nodes which belong to a cluster. The

CedCom architecture allocates secondary storage automatically for the data blocks

which cannot be stored in attraction memory or transit area. However, the architecture

would load the data blocks automatically in attraction memories or transit areas as

soon as it finds required spaces for the blocks.

The directory-node is essentially a metadata server which provide information such

as locations and state of the data blocks. Like Hadoop, the compute-nodes are tightly

linked with the directory-nodes whereas the connection between compute-nodes are

kept open for a temporary session. The closing of the session should terminate all

connections between nodes.

July 2014 Page 8 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

5 Development of CedCoM Architecture

This section describes the implementation of the CedCoM architecture. We used C++

programming language for the implementation. It is a suitable language for develop-

ing high-performance computing (HPC) applications with a real control of the memory

used for computation. In addition, several external libraries are available to avoid rein-

venting the wheel. The solution implemented in this paper is independent of any spe-

cific operating system platform. The following subsections describe the development

of the CedCom architecture.

The implementation is described in three parts. In the first part, we describe the de-

velopment of the basic concepts. In the subsequent part, we describe how the core

components: the compute-node and the directory-node have been implemented. The

final part presents the details of implementation of some advanced operations.

5.1 Basic concepts

The following subsections provide details on how we developed the basic concepts of

the CedCom architecture.

5.1.1 Data structure

We started the development of the CedCom architecture by defining the structure of

data blocks. Since the data blocks will be frequently migrated within clusters, it is

important to define the size of data blocks. To create a generic and portable structure,

the data is divided according to our own file system. The size of data blocks are

predefined. Each block has a unique identifier which is a reference key for the blocks

and used to store the blocks in processing nodes. The unique key of a data block must

not be altered. It must be the same for all processing nodes storing that data block. This

identifier is assigned by the directory-node whenever a node registers a new incoming

data. A node can register as many blocks as it can store and thus, can obtain a range

of identifiers.

Data is stored in the ‘data’ part of the nodes. It is the smallest unit of a large file. The

size of the data stored in one slot may vary, but cannot exceed the maximum size that

was predefined. To identify the source of the data, a field name called ‘filename’ has

been added. It enables a node to find different parts of a file by using their filenames.

A specific directory located in the directory-node enables to find the data blocks by

their filename.

5.1.2 Network communication

The CedCom architecture is specially designed for Big Data applications and there-

fore, it handles a large quantity of data that is distributed within and across clusters.

The data can be stored and migrated over the network if needed. Thus, an efficient

communication protocol had to be implemented to enable faster communication be-

tween the nodes.

July 2014 Page 9 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Since C++ provides a basic network implementation, we decide to use a high-level

tool provided by the boost suite called ’Boost Asio’.1 This tool was selected because it

provides pre-built functions that are easy to use at the network layer. However, ’OPEN

MPI’ was initially selected.2. But because it facilitates only the parallelization of the

task processing and not the transfer of data, the tool was not used.

Boost Asio provides a function to open synchronous or asynchronous connections be-

tween servers. It simplifies network utilisation by overloading the basic C++ functions.

Combining ‘Boost Asio’ with basic functions of C++, the CedCom architecture pro-

vides functions to open a socket between a client and a server. In addition, it provides

functions to write or read binary streams to the socket. The main advantage of using

‘Boost Asio’ is the portability.

5.1.3 Connection management

The CedCom architecture handles distributed data that are supplied by an external

client. Currently, the architecture does not have any native client for loading data;

rather, it relies on external clients more specifically, the application clients. The con-

nection between client and nodes is established in two steps. First, the client requires

the meta-information about the data nodes included in the cluster. To do so, it con-

tacts the directory-node and fetches information such as the IP address, the TCP port,

the storage space available, and the utilization ratio of memory. Based on the col-

lected information, the client produces a data distribution plan. Then, the client opens

connections with different compute-nodes and sends the data blocks to those nodes.

The size of the data packets is critical. Typically, it depends on the network band-

width. The CedCom architecture enables receiving data with small blocks or a large

blocks (e.g., 500 MB or more). For the small size blocks, the data received by the

compute-nodes are aggregated immediately in the registration queue. For the large

size blocks, the nodes use a specific input buffer which temporarily stores the incom-

ing data blocks. In order to confirm the correct order of arriving data blocks, a unique

number is assigned with each block which can be deemed as an identifier or a tag num-

ber. Upon receiving a block, the compute-node verifies the tag number to ensure the

correctness. If the verification is not successful, the compute-node sends an ‘error’

message which contains the block’s tag number, to the client. The client uses it as a

reference number and can find easily the invalid block and resend it to the node.

The compute-node automatically detects when the client leaves or closes the connec-

tion and therefore closes the socket, clear the input buffer, and start waiting for the

next data blocks. The CedCom architecture does not use any close protocol. The client

opens the connection with the node, send data blocks, and then disconnects itself.

The compute-node uses a ‘registration queue’ to add data blocks received by the node.

This queue temporarily stores the blocks before adding them in the attraction memory

of the nodes. The new blocks are stored in this queue, because they do not have their

unique identifier when they were created. The directory-node assign unique identifiers

1
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html

2
http://www.open-mpi.org/

July 2014 Page 10 / 30

http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.open-mpi.org/

RAYNAUD, T.; HAQUE, R. COMA for Big Data

to the blocks. They are then added to the attraction memory.

5.1.4 Replication management

Like Hadoop, the CedCom architecture uses the notion of data replication. However,

the architecture would not allow creating replicas in attraction memories. Since, data

can be migrated dynamically from node X to node Y, we argue that replication would

not be necessary. However, replicas could be created in attraction memories dynam-

ically to deal with a specific condition which is—two or more nodes need the same

data blocks for processing tasks.

Typically, the CedCom architecture enables creating (maximum) one replica in sec-

ondary storages. In this case, it differs the replication policy of Hadoop. The notion of

replication has been adopted in this architecture to make the system fault tolerant. For

instance, if a node does not send heartbeat signal during a predefined timeout period,

the directory-node automatically considers it a inactive node, and issue a command to

a relative free compute-node to load the replicas of the inactive node into its attraction

memory. The compute-node is allowed to store only one replica of a data block. When

the restoration of data blocks are completed, the directory-node automatically update

its own global index. If an update occurs, the replications of this block has to stay up

to date. This update employs the principle of the write-update protocol.

5.1.5 Serialization

Serialization is critical to the CedCom architecture. The reasons are two-fold. First,

it enables saving data in a known format. Second, it enables sending data easily from

one node to another by merely sending the binary streams in the sockets.

To simplify the serialization process, we use the technology called ‘Boost Serializa-

tion’. It enables transforming a C++ class in a binary format or parse a binary stream

in a specified class. More importantly, it enables choosing the variables of a class to

be serialized and also the variables not to be serialized. This ‘Boost Serialization’ en-

ables the serialization of a great part of the std container, like vector or map. Another

advantage of this library is that it recursively serializes the classes. This means, if a

variable is an instance of another serializable class, it will be easily serialized like a

primitive type in the source code.

5.1.6 Configuration

The CedCom architecture is complex. Therefore, initializing parameters in a command

line interface is non-trivial task. To simplify, a parameter file has been integrated with

CedCom. The parameter file contains all the information required at the initialization

phase. It will greatly help users (e.g., administrators) to initialize the compute-nodes

and the directory-node. The parameters stored in those files are as follows.

• Parameters for compute-nodes:

– The path of hard drive where the data is stored

July 2014 Page 11 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

– The IP address of the directory-node

– The communication port of the directory-node

– The Heartbeat port of the directory-node

– The transfer port use to establish a connection with an other compute-node

– The port the client has to use to establish a connection

– The Heartbeat interval delay

– The Replication port

• Parameters for directory-node:

– The path on hard drive where the data is stored

– The communication port

– The Heartbeat port

– The port the client has to use to establish a connection

5.1.7 Client connection

The users will use the client applications to distribute data to the compute-nodes. Since

currently no client component has been implemented in this paper, the users need

to use application’s client for data distribution. The application client contacts the

directory-node to obtain the information required to establish connections with the

compute-nodes. The directory-node has an asynchronous server that is used only to

communicate with the client on a predefined port. This client receives various infor-

mation from the directory-node such as:

• IP Address and port to open the communication;

• free-space storage;

• size of the block;

• memory utilization ratio.

This helps the client to partition the file into blocks of specific size expected by the

compute-nodes. When the partition is completed, the data blocks are sent to compute-

nodes.

5.2 Core components

The subsections below describes the details how the core components have been im-

plemented.

5.2.1 The compute-nodes

The compute-nodes are important elements of the CedCom architecture. These nodes

store data and execute jobs. Figure 3 shows the structure of a compute-node.

The CedCom architecture organizes memory in an unique style. In the subsection

below, we describe the memory organization of the CedCom architecture.

July 2014 Page 12 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Figure 3: Structure of a compute-node

A. Memory organization

A.I. Attraction memory

A.I.a. Associative cache

A.II. Transit area

A.III. Secondary storage

B. Local directory

C. Versioning system

D. Operating principle

D.I. ComLoader

D.II. Block manager

D.III. Transit-area manager

D.IV. Heartbeat manager

D.V. Replication manager

D.VI. Backup manager

D.VII. Block registration manager

A. Memory organization Each node has its own independent memory. In this ar-

chitecture, data is stored exclusively in main memory to improve the performance by

reducing time needed to access the data. The CedCom architecture organizes different

types of storage specifically, Attraction Memory, Transit Area, and Secondary Storage

as a single unit. A new data block will first, attempt to be stored in attraction mem-

ory. However, as explained in Section 4, it will be stored in secondary storage if and

only if the attraction memory of all the nodes in the cluster is filled with data blocks.

July 2014 Page 13 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

The transit area will store the least recently used and ready to be migrated blocks.

This area is considered as the transit point for data migration. In fact, this is the rea-

son we named this Transit Area. The implementation of these kinds of storage in the

CedTMart system [2] are discussed in the following subsections:

A.I. Attraction memory The main purpose of attraction memory is to store the data

blocks that have higher cache hit ratio. Cache hit refers to a successful attempt made

by CPU to read or write a data block in the CPU cache. These data blocks are the

much needed ones for processing tasks such as a query. The data is stored in attraction

memory to enable faster access by processors.

A.I.a. Associative cache To implement the attraction memory, we used a technique

called multi-way associative cache. This technique divides the memory slots into sub-

sets and uses the hash keys to store and find the data. The term ‘way’ is used to define

the maximum number of items each set can contain. This technique is also called n-

way associative cache which can be written as follows, 2N slots of the memory into

x subsets, each one having 2n slots, with n < N and x = 2
N

2n
. Figure 4 depicts an

example of a two-way associative cache.

Figure 4: Two-way associative cache

We choose this technique because it provides a fast access to the data and a better hit

ratio than a usual cache [7]. With the use of this approach, the complexity of finding

a block in O(n) reduces to O(log(n)) where n is the number of elements stored in

the memory. A standard list structure was a potential candidate technology as well

but it is not a feasible option because it results a systematic shift of all elements in the

set (O(n)) which requires a lock during the execution. The associative cache uses the

technology called Map that is more efficient. It organizes the data table comprises two

columns: key and value. This enables faster data access. The CedCom architecture

promotes the operational complexity as follows, find or insert an element O(log(n))
and delete O(n) (without lock).

July 2014 Page 14 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

A.II. Transit area The size of attraction memory is limited. Thus, it is likely that

an excessive number of blocks with the same hash key stored in the same node cause

a buffer overflow. Since migrating data blocks to attraction memory of another node

would generate high-traffic and storing blocks in hard drive is not a viable option, the

blocks are moved to the transit area. The key purpose of implementing transit area is

to increase the availability of attraction memory for the data blocks with high cache

hit ratio.

The transit area is implemented with a single map which contains the blocks and uses

their identifiers as keys. This enables users to find blocks, delete blocks, or add a new

block with a complexity of O(log(n)). A specific class: secondary_memory.h gives

some pre-built optimized functions to access, update, and delete different blocks that

are available in the Map.

A.III. Secondary storage The CedCom architecture includes the secondary storage.

The key purpose of this storage is to complement the attraction memory. The data

blocks are sent to secondary storage when the attraction memories are full or above a

predefined threshold. Since reading data blocks from secondary storage is time con-

suming, there is a trade-off using secondary storage. More specifically, data blocks

will be stored in secondary storage at the expense of performances.

B. Local directory The local directory has been introduced in the CedCom archi-

tecture to index the locations and status of the data blocks contained in the compute-

nodes. The locations are: Attraction Memory, Transit Area, and Secondary Storage.

The local directory reduces time to read, find or write data blocks. Without indexation,

these operations are time consuming because the system must scan all different loca-

tions sequentially. The directory provides exact locations of data blocks and hence,

accelerate the speed to finding data.

C. Versioning system A version management system has been integrated in the Ced-

Com architecture to avoid data loss. The architecture enables a node creating the snap-

shots of itself and storing them in its secondary storage. These snapshots are called

versions. Each snapshot corresponds to a specific restoration point. However, storing

the snapshot of a node can be expensive in terms of storage space. The storage can be

overflowed. In order to avoid overflow of local storage, a few (e.g., currently 3) ver-

sions of nodes are kept in the secondary device. In case the storage is full, the oldest

version will be removed.

D. Operating principle The operating principle of a compute-node is complex, be-

cause a number of parallel operations will be carried out by the node at runtime, espe-

cially maintaining the data coherency is non-trivial. Various operational components

have been implemented for parallelising operations that a compute-node performs at

runtime. They are described as follows:

July 2014 Page 15 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

D.I. ComLoader This is an important component of the CedCom architecture. It

performs the primary operations such as starting or stopping the other components of

a compute-node. It process instructions received from the directory-node. Also, it

performs saving the snapshot of the recent state of compute-nodes. For instance, if

a compute-node is shutdown normally, the save on exit option is popped up on the

screen. Then, the ComLoader (stands for Component Loader) saves all the contents

and node information as a file in secondary storage and reloads it when the node is

restarted. The node information file is saved on the secondary storage usual way except

for the fact that the new versions of the node will be created by the ComLoader.

D.II. Block manager To keep the data blocks contained in the compute-nodes con-

sistent, we have implemented a Block Manager. The main tasks of this component are,

moving or adding data blocks in memories. In CedCom, when data blocks are arrived,

they are added in the input queue which store the blocks temporarily. The block man-

ager calculates the hash keys of the incoming blocks and stores them in appropriate

sets of attraction memories. If the set is full, the block manager automatically moves

the oldest blocks of the set into Transit Area. This frees attraction memory to load

new data blocks. Finally, the block manager updates the local directory to maintain a

coherence between the block identifiers and their locations.

D.III. Transit-area manager The Transit Area Manager has been implemented to

manage the blocks stored in the Transit Area. The main purpose of developing this

component is to manage the transit area efficiently to make attraction memory available

for the data blocks with high hit ratio. The key role of this component is managing the

transit storage and also finding a host to migrate the blocks. However, the migration

of a data block is performed on two conditions: the data block is the least recently

used one and the potential host node has sufficient storage available. The transit area

manager contacts the directory-node to find a compute-node that can host data blocks

located in transit area. If the directory-node finds host then it returns the information

to the requester node. Then the transit area manager transfers data blocks to the host

node. The block stays in transit areas until a host node is found.

D.IV. Heartbeat manager This component is responsible for managing one-way

messages from compute-node to directory-node. It triggers messages at a regular inter-

val and sends to the directory-node. This signal is an indication to the directory-node

that the compute-node is active. The message body contains various information such

as availability of free spaces in the nodes and the memory usage ratio. Note that, the

manager will not initiate connection with the directory-node on the Heartbeat port.

This task is done at the node initialization phase.

D.V. Replication manager Two major functionalities of the replication manager are:

(i) it enables storing replicas of data blocks in the secondary storage of a node, which

are received from another node and (ii) it enables moving a replica of a data block to

make it available to the attraction memory of a node where it is required to process a

July 2014 Page 16 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

job. The manager enables to access data in the replication area of secondary storage.

No other data is allowed in this restricted area. The strict access control guarantees

data consistency. In CedCom architecture, each node has a specific port to create an

asynchronous server specifically for the replication.

The replications are managed by the directory-node and therefore, this particular com-

ponent is deployed on this node. We developed a replication directory in our architec-

ture. This directory contains information such as data blocks that need to be replicated.

The manager contacts the host compute-node and requests to create replicas of the data

blocks. The compute-node creates the replica and stores its in the replication area. It

is worth mentioning that only one replica is allowed in the attraction memory of one

compute-node.

D.VI. Backup manager A compute-node may need to be shut down. Since the Ced-

Com is an attraction memory based architecture, the information of compute-nodes

(such as the information about Attraction Memory, the Transit Area, and the Local

Directory) and the data blocks which it contains must be persisted. CedCom stores

the snapshot of compute-nodes in their secondary storages. The node information and

data blocks are stored at a regular interval to save the most recent changes in the at-

traction memory. Also, the directory and the transit area are stored. Essentially, once

the information are saved, the Backup Manager updates the information periodically

rather than repeating the write of the same information on secondary storage. Since

writing node information and data blocks are time consuming, the ‘Block Manager’

launch multiple threads to parallelize the task.

D.VII. Block-registration manager The ‘Block Registration Manager’ is responsi-

ble for registering the inbound data blocks from the clients. It contacts the directory-

node and assigns a unique identifier to the new blocks. The CedCom architecture

enables generating several threads to perform this task in parallel.

5.2.2 The directory-node

This subsection describes the directory-node of the CedCom architecture. This is es-

sentially a shared metadata server in our architecture. In CedCom, each compute-node

can act as a local metadata server because, each of them has a local directory that sup-

plies a limited amount of meta-information. However, the information is purely about

the data blocks stored in local node. Thus, a global metadata server has been developed

in our architecture to deal with some specific situations. For instance, the local meta-

data servers usually do not have sufficient information about the data blocks stored

in other nodes in the cluster. Conventional COMA does not have any directory-node,

rather, it relies on local metadata. In this case CedCom architecture adopts Hadoop’s

architectural principle a global metadata server that receives requests coming from the

compute-nodes.

Big Data applications can generate billions of blocks distributed to thousands of nodes.

Thus, storing global metadata in compute-nodes may not be a viable option for two

July 2014 Page 17 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

reasons: it will consume the attraction memory or transit area and maintaining an up-

dated distributed metadata server is a non-trivial task and computationally expensive.

The former is a well-understood problem whereas the latter is communication network

related problem. For each write, all metadata servers have to be updated, which will

promote an exhaustive number of messages exchanged between the nodes. This will

cause a high traffic in the network. Consequently, the job processing time will be

increased. In some case, processing time can be increased increased dramatically.

Considering these issues, the CedCom architecture introduces a specific node to take

the role of storing and managing a Big Directory which stores the location of all the

blocks distributed across the compute-nodes. We called this node ’Directory-Node’.

This node is aware of both locations of the different blocks and active blocks which

is a similar approach to Hadoop [12] but more simplified. Additionally, this node also

manages the block replication system. Figure 5 shows the directory-nodes.

Figure 5: Structure of the directory-node

Below, we describe different aspects of the directory-node. They are organized as

follows.

A. Server operations

A.I. Communication connection

A.I.a. Command requests
A.I.b. Data requests
A.I.c. Communication protocol

A.II. Heartbeat connection

A.II.a. Heartbeat protocol

A.III. Operating principle

July 2014 Page 18 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

A. Server operations The directory-node acts as a metadata server. The compute-

nodes are connected with them over the peer-to-peer technology. The connection be-

tween the directory-node and the compute-nodes are permanent. The connection has

been classified into Communication Connection and the Heartbeat Connection. Note

that, the directory-node communicate with compute-nodes asynchronously. Therefore,

the node is able to receive and manage hundreds of requests from hundreds of nodes

simultaneously, using multi-threading techniques.

A.I. Communication connection The compute-nodes may contact the directory-

node in many occasions such as to know about the location of a data block. The

Communication Connection has been implemented to establish connections efficiently

between the compute and directory-nodes. In order to establish connection, first the

directory-node checks ip address of a compute-node in the directory. It is worth noting

that the ip addresses are stored in the directory-node through a registration process that

is done when a compute-node is connected with directory-node for the first time. If an

ip address is not found in the directory, the directory-node starts registration process.

It creates a new unique node identifier and gives it to the compute-node which opens

the new connection. If an error occurs during this phase, the compute-node is imme-

diately turned off. Once the connection is successfully established, the directory-node

uses this connection to perform the following tasks:

• turning off the node (with or without save)

• duplicating data blocks

• restoring data blocks in the attraction memory or transit area

• creating restoration point of compute-nodes

• restoring a compute-node by reading the node information snapshot which was

taken while switching off the compute-node

On the other hand, the compute-node uses the socket to do the following actions:

• requesting information about a block location

• requesting the IP address of a specific node

• register a new block, or a group of blocks

• disconnect the node from the directory-node

• sending an update signal to notify the move of a block in the local attraction

memory

We implemented a protocol to handle the requests from compute-nodes to the directory-

node. The request messages must comply the protocol. It is worth noting that in Ced-

Com architecture the requests messages are categorised into command requests and

data requests. They are briefly explained in the following.

July 2014 Page 19 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

A.I.a. Command requests The commands requests are concerned with requesting

information or operations. The size of the body of the command request messages is

small. It does not exceed fifty characters. The format used for this type of requests

is as: a four characters header for writing the operations and the remaining are for

instructions. Regex is used to identify and extract information from the request mes-

sages.

A.I.b. Data requests The data requests are concerned with sending the data blocks

from one node to another. Unfortunately, the Regex technology is slow for data re-

quests because of the size of messages’ body is large. Thus, analysis of the message

takes longer period. Note that, upon receiving a request message, it is analysed. We

cleverly avoid analysing the body of data request messages by separating the it from

the header. The CedCom architecture allows only the header to be analysed. Currently,

the separator used is ‘||-||’. The frequency of its occurrence is very close to zero.

A.I.c. Communication protocol The CedCom architecture has its own low-level

communication protocol. The protocol presented below has been implemented so far:

• The compute-nodes open the connection with the directory-node by using the

asynchronous connection provided by ‘boost.asio’.

• The directory-node registers the connection by assigning a unique node identi-

fier corresponding to the IP address of the compute-nodes

• The directory-node sends the registration notification to the compute-node:

- If successful—the identifier of the node:

RSTR:N<(node_identifier)>;

- If failing—an error message:

RSTR:ERR:(error_message);

• The compute-node will use this connection to request for information about the

location of a block:

- Request:

BLCK:BLOCK<(block_identifier)>;

- Response:

BLCK:BLOCK<(block_identifier)>,

NODE<(node_identifier)>,

ADDRESS<(ip_address:port)>;

July 2014 Page 20 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

• The compute-node will also use this connection, to obtain a group of unique

identifiers for the new blocks received from an external client:

- Request:

BLRG:RANGE<(number)>;

(Range is used to determinate the number of identifiers requested.)

- Response:

BLRG:MIN<(min_identifier)>,MAX<(max_identifier)>;

• The directory-node can use this connection to turn off a compute-node with or

without previously saved contents:

STOP:SAVE<true/false>;

A.II. Heartbeat connection In our architecture, a separate connection type has been

implemented to send heartbeats from the computing nodes to the directory-node. Heart-

beats are the signals to the directory-node that the compute-nodes are alive or dead.

As mentioned earlier, the compute-nodes send heartbeat signal at a regular interval.

To register a heartbeat connection, the nodes must be already registered with the

directory-node. The registration will result in opening a socket between the nodes

(a computing node and the directory-node). Using this socket the compute-nodes send

signals to the directory node. If the registration of a compute-node is unsuccessful, it

will be turned off and an error message will pop up.

As mentioned in the beginning of this section, in addition to the heartbeat signal, the

compute-nodes send other information of itself. In particular, the following informa-

tion are transmitted in each heartbeat:

• Free Space of the nodes

• Memory utilisation ratio of the nodes

The directory-node generates and persists metadata and the time-stamp of a compute-

node. For instance, it tracks the latest time-stamps of heartbeats and stores it as meta-

data An arbitrary time is defined as timeout which allows the directory-node to deter-

mine whether the node is offline. This timeout is currently set to 5 seconds.

A.II.a. Heartbeat protocol We implemented a protocol for the communication con-

cerning the heartbeats between compute-nodes and the directory-node. This protocol

is used for communicating with the heartbeat port which is implemented specifically

for the communication about heartbeats . The protocol is briefly explained in the fol-

lowing:

July 2014 Page 21 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

• The compute-nodes open the connection with the directory-node by using the

asynchronous connection provided by ‘boost.asio’.

• The directory-node registers the Heartbeat by associating the IP address of the

node with its unique identifier

• The compute-nodes send an initialization message to the directory-node to in-

form about the port which the (external) client should use to establish a connec-

tion:

INIT:C_PORT<(Port_number)>;

• The compute-node sends the heartbeat message at a regular interval along with

the information of its memory use:

BEAT:FREE_SPACE<(size_in\Mo)>,RATIO<(percentage_number);

• The directory-node receives heartbeats, stores information, and updates the lat-

est heartbeat time-stamps.

• The directory-node triggers an error message upon occurrence on an error:

ERRO:(error_message);

• If needed, the directory-node uses the Heartbeat connection to turn off a node,

with or without previously save its content:

STOP:SAVE<true/false>;

A.III. Operating principle The operating components and principles of the directory-

node are explained below.

• Like compute-nodes, the directory-node has a component called ComLoader

that starts and stops the other components of the directory-node. In addition, this

component is used to save the content of the directory-node on secondary storage

if it is to be turned off. Compare to the ComLoader of the compute-nodes, the

process of storing the directory-node information on secondary devices is more

systematic.

• The directory-node has a component for checking whether or not the computing

nodes are alive. It checks the status by comparing the latest time-stamp with

the predefined timeout. If a node is not alive, this component puts it in the

restoration node queue. The nodes should be restored efficiently. To do so, the

CedCom architecture initiates a new thread to speed up the restoration process.

• The CedCom architecture has a component for managing the reload of the blocks.

If a compute-node stops responding, this component will restore all of its blocks

in memory. The reloading process is composed of four steps. In the first step,

the component identifies the data blocks that were stored in the failed compute-

node. Then, it identifies the compute-nodes that have the copies of the blocks.

In the third step, it sends a request to these nodes to transfer the blocks to the

failed compute-node. Finally, it updates the directory.

July 2014 Page 22 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Figure 6: Transfer of a block of data between two nodes

5.3 Advanced operations

This section presents a list of advanced operations performed by the components which

we have developed in this paper. The CedCom architecture enables performing these

operations during transferring and creating data blocks. They are briefly explained in

the subsections below.

5.3.1 Block transfer

This section summaries the steps of transferring blocks from the source compute-node

to the target compute-node. Figure 6 shows an example of block transfer between two

nodes.

The steps are listed below:

• The compute-nodes use the communication connection with the directory-node

to request the location of the block needed:

BLCK:BLOCK<(block_identifier)>;

• The directory-node uses the block directory to locate the specified block, and

then sends the response to the compute-node:

BLCK:BLOCK<(block_identifier)>,

NODE<(node_identifier)>,

ADDRESS<(ip_address:port)>;

• A compute-node opens a temporary connection with the compute-node that is

hosting the required data blocks, and requests for the blocks by using its identi-

fier:

BLCK:BLOCK<(block_identifier)>;

July 2014 Page 23 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

• Alternatively, a compute-node requests for processing a job to the compute-

nodes which have the copy of the data blocks needed to process the job. How-

ever, in this case the host compute-nodes must be free. The requester and the

host compute-nodes will process the transmission of the computations instead

of transferring the data packets.

BLCK:TRANS_COMP_REQ;

• If a block is transferred or just copied, the source nodes send the block by using

the standard data package format and specify in the header of the package.

DATA:BLOCK<(block_identifier)>,COPY<(true/false)>||-||(data)

• Upon arrival, a (requester) compute-node stores the data blocks in its attraction

memory and then sends a notification of the transfer to the directory-node which

updates the latest location of the blocks.

TRFR:BLOCK(block_identifier);

• The directory-node updates its block directory and sends a invalidation request

to the compute-nodes which have the old copies of the data blocks. Upon re-

ceiving the request, the source nodes invalidate the copies. This avoid the data

inconsistency and hence, the dirty read.

RMOV:BLOCK(block_identifier);

5.3.2 Block creation

This section summaries different steps which are carried out when an external client

sends data blocks to the compute-nodes. Figure 7 data transfer from an external client.

• The client establishes a connection with the directory-node which sends infor-

mation of how to contact the compute-nodes

B_SIZE<(size)>,[{"address":"(ip_address)"

,"port":"(port)"

,free_space":"(size)"

,"ratio":"(percentage)"}

]

• The client establishes a connection with the compute-nodes contained in the

clusters. It partition the input files into different packages. Each package can

contain a maximum data size that is suggested by the directory-node. The parti-

tion may result in a single package or many smaller packages, which depend on

the size of the input files and the predefined maximum size of the package.

- If data is sent as a single part:

July 2014 Page 24 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

Figure 7: Transfer of data from an external client

DATA:N<(filename)>||-||(data)

- If data is divided into many smaller packages:

PDTA:N<(filename)>,P<(part_number)>(LAST)||-||(data)

• To ensure data integrity and flow control, the compute-nodes send an ACK sig-

nal to the client for each message received.

PDTA:ACK<(part_number)>;

• The data blocks received by the compute-nodes must be registered with the

directory-node. By using a system of range, a node can obtain successive identi-

fiers. The input filenames are transferred as well to associate the filenames with

the data blocks in the internal directory of the compute-nodes. This essentially

indicates that the node will always group them by filename during block transfer.

BLRG:RANGE<(nb_block)>,FILE<(filename)>;

• Upon receiving the registration request from the compute-nodes, the directory-

node provides the block identifiers to the requesting compute-nodes.

BLRG:MIN<(identifier)>,MAX<(identifier)>;

6 Experimentation

In this section, we describe the experiment that we conducted with the CedCom ar-

chitecture. Note that, we conducted experiment on a single-node cluster, although the

CedCom architecture was developed specifically for large cluster.

July 2014 Page 25 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

6.1 Experiment setup

We conducted experiment to test only two functionalities of the CedCom architecture.

We tested its ability to a) host Big or Blinked Data applications and b) store the data

blocks efficiently [5].

The cluster contains one physical node which acts as both directory-node and compute-

nodes. The specification of the physical node are given below:

• Specification

– Processor: Intel i7

– Memory: 8GB

– Hard Disk: 1 Terabyte

– Operating System: Windows 7

We used a 10 GB dataset (containing approximately 15000 Notation 3 (N3) files) in

our experiment. 3 During the experiment, the following steps were carried out:

Step 1: The data distribution client opens a connection with directory-node (DN). The

steps listed below were performed after the connection had established.

1. The client contacts the directory-node on a specified address and a specified

port. The client message contains the amount of data it wants to distribute to the

compute-node.

2. The directory-node receives the message scan the metadata table to find avail-

able space and sends a pre-formatted string to the client containing the following

information:

• Maximum size of one data block (the default value is 512 MB)

• For each node: free space size, IP address and port

In our experiment, the directory-node sends an JSONArray (to the client) con-

taining multiple JSONObjects. The JSONObjects are of the following form:

[{"ip":"192.168.0.1"

,"port":"8888"

,"free_space":"20480"

, "ratio":"0.5"

}

,{"ip":"192.168.0.2"

,"port":"8686"

,"free_space":"200000"

,"ratio":"0.3"

}

]

3Notation 3: 4

July 2014 Page 26 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

The IP and PORT are used to establish the data connection between client and

the compute-node. The client’s distributor sends data to compute-nodes accord-

ing to the value given for “free_space” (in MB) and “ratio” (that are shown

in the above).

3. The client stops the connection with directory-node

Step - 2: The client decides the strategy to distribute the data with the previous infor-

mation

Step - 3: Then the client opens a connection with the (only) compute-node and dis-

tribute the data blocks.

Figure 8 shows the data distribution.

Figure 8: Data distibution

The following steps are performed by the nodes to distribute the data-blocks data.

1. The client opens the socket with the (only) node it wants to contact using the

same request header.

2. Then the client sends data to the compute-node. A loop was defined to distribute

data iteratively until all the blocks are sent to the compute-node. Two important

issues regarding data distribution are listed below.

• The client partitions input files into many parts according to the maximum

size 512 MB suggested by the directory-node. The client sends the data

packets begin with a header “DATA; (8 bytes).”

• The compute-node receives the data, stores it and sends a message begins

with “DATAACK; (8 bytes)” to the client.

3. Once the client closes the socket connection, compute-nodes knows directly that

the whole file has been transmitted.

July 2014 Page 27 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

We observed that the 10 GB datasets took approximately 909 seconds. The transfer

rate was 22 MB per second.

6.2 Discussion

The experiment showed that the dataset was deployed on the CedCom architecture suc-

cessfully. The connection between CedCom architecture and the application was done

successfully. We observed that the application client was able to establish connection

successfully with the directory-node for requesting metadata. We also observed that

the client was able to contact the compute-node to stores files in those nodes as data

blocks. We found our architecture is able to prevent of data loss while the reception

buffer is full.

It is worth noting that, the data are transferred as simple string and are not be encrypted.

Additionally, unfortunately, we could not test the data migration which we will be

doing in near future.

Another important conclusion we made through this experiment. Since our experi-

ment was on a single-node cluster, the speed to data distribution was quite satisfactory.

However, we do not confirm the same performance for a large cluster before testing

the architecture.

7 Conclusion and Future Work

In this technical report, we implemented and presented the CedCom architecture. We

provided the detail the existing technologies. We found COMA and HDFS are the

potential technologies which can reused to develop our architecture. Essentially, the

architecture has been developed by amalgamating COMA and Hadoop’s architectural

principle. The key objective of this architecture is is to leverage the power of COMA

to improve the performance of Big Data or Blinked Data applications. Several compo-

nents have been developed in this paper. We implemented components of Directory-

Node and Compute-Node. Also, we implemented attraction memory using an efficient

technique called n-way associative cache. This enables high-speed data access and

increases the cache hit ratio significantly. Additionally, we implemented the data mi-

grator that enables migrating data blocks automatically from the source to the target

nodes in the clusters.

This architecture offers many functionalities. However, several works must be done

to make it a complete product. Some notable works which we planned to carry out

near future are as follows. First, we will conduct a rigorous test to evaluate all the

functionalities of the architecture. Second, we will replace the set associative cache

with the skewed associative cache which is a better approach. Third, we planned to

develop a component that can migrate data in intelligent way such as by adapting the

bandwidth. Fourth, we will complete the development of the protocols of the CedCom

architecture.

July 2014 Page 28 / 30

RAYNAUD, T.; HAQUE, R. COMA for Big Data

References

[1] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-based

cache coherence in large-scale multiprocessors. Computer, 23(6):49–58, June 1990.

[Available online5].

[2] Minwei Chen, Rafiqul Haque, and Mohand-Saïd-Hacid. CedTMart—A Triplestore for

Storing and Querying Blinked Data. CEDAR Technical Report Number 7, Université

Claude Bernard Lyon 1, Computer Science Department, Villeurbanne, France, July 2014.

[Available online6].

[3] James R. Goodman. Using cache memory to reduce processor-memory traffic. In Harold

W. Lawson Jr., Tilak Agerwala, Hans H. Heilborn, Hideo Aiso, Lars-Erik Thorelli, Jean-

Loup Baer, and Mario Tokoro, editors, Proceedings of the 10th Annual International

Symposium on Computer Architecture (ISCA’83), pages 124–131, Stockholm, Sweden,

1983. ACM. [Available online7].

[4] Erik Hagersten, Anders Landin, and Seif Haridi. DDM—a cache-only memory architec-

ture. Computer, 25(9):44–54, 1992. [Available online8].

[5] Rafiqul Haque and Mohand-Saïd Hacid. Blinked Data: Concept, characteristics, and

challenges. In Proceedings of Service Congress 2014 (to appear), 2014.

[6] Henk L. Muller, Paul W. A. Stallard, and David H.D. Warren. The data diffusion machine

with a scalable point-to-point network. Technical Report Number CTRS 93-17, Univer-

sity of Bristol, Department of Computer Science, Bristol, UK, October 1993. [Available

online9].

[7] Henk L. Muller, Paul W. A. Stallard, and David H.D. Warren. The role of associa-

tive memory in VSM architectures: A price-performance comparison. Technical Report

Number CTRS 95-009, University of Bristol, Department of Computer Science, Bristol,

UK, October 1995. [Available online10].

[8] Henk L. Muller, Paul W. A. Stallard, and David H.D. Warren. Implementing the data

diffusion machine using crossbar routers. In Kai Hwang, editor, Proceedings of the 10th

International Parallel Processing Symposium (IPPS’96), pages 152–158, Washington,

DC, USA, April 1996. IEEE Computer Society. [Available online11].

[9] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich,

David Mazir̀es, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosen-

blum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The case for RAM-

Clouds: scalable high-performance storage entirely in DRAM. ACM SIGOPS Operating

Systems Review, 43(4):92–105, December 2010. [Available online12].

[10] Sanjay Raina. Virtual shared memory: A survey of techniques and systems. Technical

Report Number CSTR-92-36, University of Bristol, Department of Computer Science,

Bristol, UK, December 1992. [Available online13].

5
http://www.cs.ucr.edu/˜bhuyan/CS213/2004/LECTURE11a.pdf

6
http://cedar.liris.cnrs.fr/documents/ctr7.pdf

7
http://courses.cs.vt.edu/.../TransactionalMemory/Goodman-SnoopyProtocol.pdf

8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6673

9
http://www.cs.bris.ac.uk/Publications/Papers/1000019.pdf

10
http://www.cs.bris.ac.uk/Publications/Papers/1000065.pdf

11
http://dl.acm.org/citation.cfm?id=645606.660867

12
http://web.stanford.edu/˜ouster/cgi-bin/papers/ramcloud.pdf

13
http://www.cs.bris.ac.uk/Publications/Papers/1000011.pdf

July 2014 Page 29 / 30

http://www.cs.ucr.edu/~bhuyan/CS213/2004/LECTURE11a.pdf
http://cedar.liris.cnrs.fr/documents/ctr7.pdf
http://courses.cs.vt.edu/cs5204/fall11-kafura/Papers/TransactionalMemory/Goodman-SnoopyProtocol.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6673
http://www.cs.bris.ac.uk/Publications/Papers/1000019.pdf
http://www.cs.bris.ac.uk/Publications/Papers/1000065.pdf
http://dl.acm.org/citation.cfm?id=645606.660867
http://web.stanford.edu/~ouster/cgi-bin/papers/ramcloud.pdf
http://www.cs.bris.ac.uk/Publications/Papers/1000011.pdf

RAYNAUD, T.; HAQUE, R. COMA for Big Data

[11] Tanguy Raynaud. A cache only memory based architecture for big data applications.

Master’s thesis, Université Claude Bernard Lyon 1, Computer Science Department,

Villeurbanne, France, July 2014.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop

distributed file system. In Proceedings of the 26th IEEE Symposium on Mass Storage

Systems and Technologies (MSST’10), pages 1–10, Washington, DC (USA), 2010. IEEE

Computer Society. [Available online14].

[13] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 3rd edition, 2012.

[14] Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, and George Lapis.

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data.

McGraw-Hill, 2011. [Available online15].

14
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.989

15
http://public.dhe.ibm.com/common/ssi/ecm/en/iml14296usen/IML14296USEN.PDF

July 2014 Page 30 / 30

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.989
http://public.dhe.ibm.com/common/ssi/ecm/en/iml14296usen/IML14296USEN.PDF

C E D A R

Technical Report Number 8
A Cache Only Memory Architecture for Big Data

Applications
Tanguy Raynaud and Rafiqul Haque

July 2014

	Introduction
	Motivation
	Related Work
	Shared memory abstraction
	Memory access
	Cache coherence
	The Data Diffusion Machine (DDM)
	The Hadoop Distributed Filesystem (HDFS)

	The Design of CedCoM Architecture
	Development of CedCoM Architecture
	Basic concepts
	Data structure
	Network communication
	Connection management
	Replication management
	Serialization
	Configuration
	Client connection

	Core components
	The compute-nodes
	The directory-node

	Advanced operations
	Block transfer
	Block creation

	Experimentation
	Experiment setup
	Discussion

	Conclusion and Future Work

