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Abstract—Distributed architecture is widely used for storing
and processing Big Data. Operations on Big Data need first,
locating the required data blocks and then, reading them. Data
can be located in different types of memories in particular,
cache memory, main memory, and secondary memory. Reading
data from secondary memory to process Big Data jobs is not
an ideal approach especially for high performance applications
because, accessing data in secondary devices can be slow for
processors. In addition, fetching data from main memory is
time consuming due to limited I/O bandwidth. These system
level issues are barriers for optimizing performance of Big
Data applications. Simply put, for optimizing the application
performance, it is not sufficient to have efficient algorithms only,
an efficient architecture is needed to provide faster data access
by the processors. The need for such an architecture has been
documented in the literature, however, the state of the art is
still missing an efficient architecture. This paper develops a
promising architecture which caches data in main memory. It
essentially transforms a main memory into a attraction memory
which enables high-speed data access. Also, it enables automatic
migration of data blocks and computations across the nodes
contained in the clusters. It offers an exchange protocol for fast
transfer of data blocks between the different physical nodes and
speeds up job processing. The proposed architecture combines
the power of Cache-Only Memory Architecture (COMA) and
the structural principle of Hadoop.

I. INTRODUCTION

Data is becoming bigger everyday. Today, its size ranges
from Gigabytes (GBs) to Petabytes (PBs). It has been predicted
by many such as, Zikopoulos et. al that the data size will reach
to Yottabytes in future [1]. 1The rapid increase of data has
given the rise to several problems related to computation (e.g.
processing a job), predominantly, efficient access to mammoth
size datasets. Time to access data is a critical attribute since
it is one of the determinators of the efficiency in terms
of processing jobs on Big Data. In most of the literature
related to Big Data, importance has been given to optimization
algorithms such as query processing algorithms. These have
heavily been investigated, and improved, for querying Big
Data efficiently. System level issues such as high-speed data
access and also fetching them to CPU caches in case of cache
miss are important too; yet, surprisingly overlooked in existing
technologies. A cache miss refers to an unsuccessful attempt
by a CPU to read or write a data block in its cache.

1Yottabyte: http://en.wikipedia.org/wiki/Yottabyte

In distributed environment, efficient management of mem-
ory is of critical importance. In this, different time variants
are vital performance metrics and as such determine the
performance of applications. For instance, access time to a
desired data block is an important metric and determine the
performance of query processing. It is composed of time to
locate data blocks and time to load data into main memory
from the hard disk. These two in addition to others such as
query execution time determine the efficiency of Big Data
applications. Thus, the delay to locate data blocks or loading
data can degrade the performance significantly.

Furthermore, accessing data stored in secondary devices is
time-consuming. In fact, even the disks with the fastest RPM
(rotation per minute) consume a significant amount of time
to read write data from to secondary devices. Therefore, it
is highly unlikely that a high-performance application would
be able to perform jobs efficiently using disk-based system
architectures. The architecture such as Hadoop [2], GFS [3]
are disk-based, and thus do not guarantee high performance.

Instead of disk-based, conventional in-memory based ar-
chitecture could be an option to optimize processing time.
However, that is not a suitable option for the applications
which process real-time queries on Big Data sets. The key
reason is limited I/O bandwidth. In addition, the size of main
memory available on the market is an obvious limitation.
Although, the technologies such as Virtual Shared Memory [4]
are available to deal with the size problem, communication
overhead and complexity of cache coherence can not be
ignored. Taking all these facts into account, we conclude that
an efficient system architecture for supporting the Big Data
applications is yet to be defined.

Our main interest in this research paper lies at the system
layer. Our objective is to develop a high-performance architec-
ture called ‘CedCoM’ (CEDAR Cache Only Memory), which
will enable efficient data processing by making data access
faster for the processors by increasing the cache hit ratio.
The proposed architecture combines the power of Cache-Only
Memory Architecture (COMA) and the structural principle of
Hadoop. It aims to solve two major problems. First, avoiding
systematic access to secondary storage when the processors are
to execute a job. This is possible by finding an effective and
efficient way to provide access all necessary data blocks to a
machine. Second, enabling dynamic migration of data blocks
between nodes. It is worth noting that, the ultimate goal of the
architecture is to support high-performance query processing



on Big Data.

The rest of the paper is organized as follows. In Section
II we describe the motivation of this research. A high-level
overview of the CedCom architecture is presented in Section
III. Section IV describes the development of the architecture.
Experiments and results are presented in Section V. Section
VI presents the related work. The final section provides a
conclusion and the outlook of this research.

II. MOTIVATION

There are many efficient query processing algorithms. In
the area of distributed databases, efficient algorithms play a key
role to process queries efficiently. However, reducing time to
access physical data is not within the scope of such algorithms.
Also, they are not concerned with time required to fetch data
from secondary storage or a main memory to CPU cache.
However, as mentioned in Section I, the temporal attributes
heavily influence the overall performance of processing time of
a job in particular, querying Big Data. Since query processing
applications are typically I/O-bound and processors are faster
than memory access, guaranteeing high-speed access to data is
of paramount importance. If access time can be reduced, the
applications will be able to process jobs on Big Data with high-
performance. This will essentially solve the problem related to
processing real-time queries efficiently on Big Data.

III. THE DESIGN OF CEDCOM ARCHITECTURE

This section presents our CedCoM architecture which com-
bines the features of COMA and Hadoop. Its novelty is that, it
adopts the structure of so called “Flat COMA (COMA-F)" [5].
We adopt COMA-F because unlike conventional hierarchical
COMA (e.g., the HORN DDM [?]), in this the data nodes
are interconnected and can potentially communicate with each
other directly using a point-to-point network [6]. Additionally,
like Hadoop, our architecture is capable of distributing data
across the nodes which comprise clusters. However, unlike
Hadoop, data is stored in attraction memories. These memories
are physically located in main memory and logically imple-
mented as cache memory. In CedCoM, there is no notion of
main memory because it is transformed into attraction memory.
Figure 1 shows the CedCom architecture.

Fig. 1. The Architecture of CedCom

The architecture comprises directory node and compute
nodes (Note that, we use the terms compute node and data
node interchangeably in this paper). A compute node consists
of processors, conventional cache memory, and main memory.
Figure 1 shows that the larger portion of the main memory of
the compute nodes is transformed into attraction memory. The
size of attraction memory is predefined by users. In addition,
the remaining portion is called transit area. Additionally, the
CedCom architecture allocates a certain amount of memory
for storing a directory (Dir, shown in the above figure). It is
worth noting that the CedCom architecture provides flexible
space management for transit areas and directories.

The data blocks that are needed to execute a job by a
compute node are not necessarily stored on the same node.
Since the CedCoM architecture relies on COMA, data blocks
do not need a particular home node. Any compute node
can contain any data block. If a block is required by the
node but stored in another node, the target node contacts
source node and then the block is migrated from the source
to target node. However, in case of large size data blocks,
the proposed architecture enables transferring computations to
the target node, in lieu of data blocks. This is a substantial
feature of the proposed architecture. The key idea is to reduce
the delay which can be the result of high traffic which are
created due to an exhaustive number of interactions between
the nodes. Transferring computation to the data hosts would
avoid communication between the nodes and eventually would
ensure faster job processing.

The architecture contains a local directory which indexes
the data blocks stored in the local attraction memory. The
attraction memory contains the data blocks. The transit area
contains the least recently used (LRU) data blocks that are
transferred from the attraction memory. Also, it temporarily
stores the data blocks that are about to be migrated or copied
to other compute nodes.

In addition to main memory, the CedCom architecture
enables storing data blocks onto secondary storage (e.g., Hard
Disk) on special conditions. For instance, there is no space in
the attraction memory of any of the nodes which belong to a
cluster. The CedCom architecture allocates secondary storage
automatically when needed. However, the architecture would
load the data blocks automatically in attraction memories or
transit areas from the secondary device as soon as the required
spaces are found available.

The directory node is essentially a metadata server which
provides information such as locations and state of the data
blocks. Like Hadoop, the compute nodes are strongly linked
with the directory nodes whereas the connection between
compute nodes are kept open for a temporary session. The
closing of the session should terminate all connections between
nodes.

IV. DEVELOPMENT OF CEDCOM ARCHITECTURE

This section describes the development of CedCoM archi-
tecture. We used C++ programming language for the develop-
ment. It is a suitable language for developing high-performance
computing (HPC) applications with a real control of the
memory used for computation. The solution developed in
this paper is platform-neutral, which means, it is independent



of any specific operating system. The following sub-sections
describe the development of CedCom architecture.

We describe the construction of CedCom in three steps. In
the first step, we describe the the building blocks of CedCom.
Then, we describe how we develop the core components: the
compute node and the directory node. Finally, we explain the
details of advanced operations.

A. Basic Concepts

The following subsections provide a detail of the basic
building clocks of CedCom architecture.

1) Data Structure: We start the development of CedCom
by defining the structure of data blocks. Since the data blocks
will frequently be migrated within clusters, it is important to
define the size of data blocks.

To create a generic and portable structure, CedCom par-
titions data according to its underlying file system. The size
of the data blocks are predefined. Each block has a unique
identifier which is a reference key to the blocks and used
in storing blocks in compute nodes. The unique key of a
data block must not be altered. It must be the same for all
processing nodes storing that data block. This identifier is
assigned by the directory node when a node registers a new
incoming data. A node can register blocks based on its storage
capability and thus, can obtain a range of identifiers.

Data is stored in the ‘data’ part of the nodes. It is the
smallest unit of a large file. The size of data stored in one slot
may vary, but cannot exceed the threshold (maximum size)
which was predefined. To identify the source of data, a field
name called ‘filename’ is added. It enables a node to find
different parts of a file by using their ‘filenames’. A directory
located in the directory node enables finding the data blocks
by their filename.

2) Network communications: The CedCom architecture is
specially designed for Big Data applications and therefore, it
handles a large quantity of data that is distributed within and
across clusters. The data can be stored and migrated over the
network if needed. Thus, an efficient communication protocol
is required to enable faster communication between the nodes.

Since C++ provides a basic network implementation, we
decided to use a high-level tool provided by the boost suite
called ’Boost Asio’. This tool was selected because it provides
pre-built functions that are easy to use in the network layer.
Initially, we selected ‘OPEN MPI’, however, since it facili-
tates only parallelization of the task processing but not data
transferring, eventually the tool was not used.

Boost Asio provides a function to open synchronous or
asynchronous connections between servers. It simplifies net-
work utilisation by overloading the basic C++ functions.
Combining ‘Boost Asio’ with basic functions of C++, CedCom
architecture provides functions to open sockets between clients
and servers. In addition, it provides functions to write or read
binary streams to the socket. The main advantage of using
‘Boost Asio’ is the portability.

3) Connection Management: The CedCom architecture
handles distributed data that are supplied by a client. Currently,
the architecture does not have any native client for loading

data. It relies on external client more specifically, the applica-
tion client. The connection between client and compute nodes
is established in two steps. First, the client requires the meta-
information about the data nodes included in the cluster. To do
so, it contacts the directory node and fetches information such
as the IP address, the TCP port, the storage space available,
and the utilization ratio of memory. Based on the collected
information, the client produces a data distribution plan. Then,
it opens connections with different compute nodes and sends
data blocks to those nodes.

The size of the data packets is critical. Typically, it depends
on the network bandwidth. The CedCom architecture enables
receiving data with small blocks or a large blocks (e.g., 500
MB or more). For the small size blocks, the data received
by the compute nodes are aggregated immediately in the
registration queue. For the large size blocks, the nodes use
a specific input buffer which temporarily stores the incoming
data blocks. In order to confirm the correct order of arriving
data blocks, a unique number is assigned with each block
which can be deemed as an identifier or a tag number. Upon
receiving a block, the compute node verifies the tag number
to ensure the correctness. If the verification is not successful,
the compute node sends an ‘error’ message which contains
the block’s tag number, to the client. The client uses it as a
reference number and can find easily the invalid block and
resend it to the node.

The compute node automatically detects when the client
leaves or closes connection and therefore closes the socket,
clears the input buffer, and starts waiting for the next data
blocks. The CedCom architecture does not use any ‘close’
protocol. The client opens a connection with a node, sends
data blocks, and then disconnects itself.

The compute node uses a ‘registration queue’ to add data
blocks received by the node. The queue temporarily stores
the blocks before adding them in the attraction memory of
the nodes. The new blocks are stored in registration queue,
because no unique identifier was assigned when blocks were
created. The directory node assign unique identifiers to the
blocks, which are then added to the attraction memory.

4) Replication Management: Like Hadoop, the CedCom
architecture uses the notion of data replication. However, the
architecture would not allow creating replicas in attraction
memories. Since data can be migrated dynamically from node
‘X’ to node ‘Y’, we argue that replication would not be
necessary. However, in special cases such as two or more
nodes need the same data blocks for processing tasks, CedCom
creates replicas in attraction memories dynamically.

Additionally, CedCom enables creating (maximum) one
replica in secondary storage of nodes. In this case, it differs
the replication policy of Hadoop. The notion of replication
has been adopted in this architecture to make the system fault
tolerant. For instance, if a compute node does not send a signal
(we call it heartbeat) during a predefined timeout period, the
directory node automatically considers it an inactive node, and
issues a command to a free the node to load the replicas of
the inactive node into its attraction memory. The compute
node is allowed to store only one replica of a data block.
When restoration of data blocks are completed, the directory
node automatically updates its own global index. If an update



occurs, the block replicas must be updated as well. This update
employs the principle of the write-update protocol.

5) Serialization: Serialization is a critical concept in Ced-
Com. The reasons are two-fold. Firstly, it enables saving data
in a known format. Secondly, it enables sending data easily
from one node to another by merely sending binary streams
in the sockets.

To simplify the serialization process, we use a technology
called ‘Boost Serialization’. It enables transforming a C++
class in a binary format or parse a binary stream in a specified
class. More importantly, it enables choosing the variables of a
class to be serialized or not. This ‘Boost Serialization’ enables
serializing a part of the std container, like vector or map.
Another advantage of this library is that it recursively serializes
the classes. This means, if a variable is an instance of another
serializable class, it will easily be serialized like a primitive
type in the source code.

6) Configuration: The CedCom architecture is complex.
Therefore, initializing parameters in a command line interface
is non-trivial task. To simplify, a parameter file has been
integrated with CedCom. The parameter file contains all the
information required at the initialization phase. It will greatly
help users (e.g., administrators) to initialize the compute nodes
and the directory node. The parameters stored in those files are
given in the following:

Parameters for compute Nodes

• Data storage path
• IP address of the directory node
• Communication port of the directory node
• Heartbeat port of the directory node
• Transfer port use to establish a connection with an

other compute node
• Port the client has to use to establish a connection
• Heartbeat interval delay
• Replication port

Parameters for Directory-node:

• Data storage path
• Communication port
• Heartbeat port
• Port used for setting up a connection

7) Client Connection: The users will use the client ap-
plications to distribute data to compute nodes. Since no client
component has been implemented in this paper, the users need
to use application’s client for data distribution. The applica-
tion client contacts the directory node to obtain information
required to establish connections with compute nodes. The
directory node has an asynchronous server that is used to
communicate with the client on a predefined port. This client
receives various information from the directory node. Below a
list of information is given.

• IP Address and port to open the communication
• Free space storage
• Size of the block
• Memory utilization ratio

These help the client to partition files into blocks of specific
size expected by the compute nodes. When the partition is
completed, the data blocks are sent to compute nodes.

B. Core Components

The subsections below provides a detail how the core
components were implemented.

1) The compute nodes: The compute nodes store data and
execute jobs. Figure 2 shows the structure of a compute node.

Fig. 2. Structure of a compute node

The CedCom architecture organizes memory in an unique
style. In the sub-section below, we describe the memory
organization of the CedCom architecture.

A. The memory organization: Each node has local memory.
In this architecture, data is stored exclusively in main memory
(RAM) to improve the performance by reducing time needed
to access data. The CedCom architecture comprises three types
of memories specifically, Attraction Memory, Transit Area, and
Secondary Storage as a single unit. A new data block will
first, attempt to be stored in attraction memory. However, as
we mentioned in Section III it will be stored in secondary
storage if and only if the attraction memories of all the nodes
in the cluster are filled with data blocks. The transit area
will store the least recently used and ready to be migrated
blocks. This area can be considered as the transit point for
data migration. In fact this is the reason we named it Transit
Area. The implementation of these storage in CedTMart is
discussed in the following subsections:

I. Attraction Memory: The main purpose of attraction
memory is to store the data blocks that have higher cache hit
ratio. Cache hit refers to a successful attempt made by CPU to
read or write a data block in the CPU cache. These data blocks
are required for processing tasks such as a query. Attraction
memory enables faster data access by processors.

a. Associative-cache: In order to implement the attraction
memory, we used a technique called multi-way associative
cache. This technique divides memory slots into subsets and
uses the hash keys to store and find the data. The term ‘way’
is used to define the maximum number of items each set can
contain. This technique is also called n-way associative cache
which can be written as follows, 2N slots of the memory into



Fig. 3. 2-way associative cache

x subsets, each one having 2n slots, with n < N and x = 2N

2n

Figure 3 depicts an example of a two-way associative cache.

Since it enables fast data access and better hit ratio than
a usual cache [7], we choose this technique. By using this
approach, the complexity of finding a block in O(n) is reduced
to O(log(n)) where n is the number of elements stored in
memory. It is worth noting that, a standard list structure was
a potential candidate technology too but it is not a feasible
option because it results a systematic shift of all elements in
the set (O(n)), which requires a lock during execution. The
associative cache uses a technology called Map that is more
efficient. It organizes the data table comprises two columns:
key and value. This enables faster data access. The CedCom
architecture promotes the operational complexity for finding
or inserting an element: O(log(n)) and for deleting (without
lock): O(n).

II. Transit Area: The size of attraction memory is limited.
Thus, it is possible that an excessive number of blocks with
the same hash key stored in the same node will cause a buffer
overflow. Since migrating data blocks of an attraction memory
to another may generate high-traffic, we developed an area
called transit area. When attraction memory of a node is full,
CedCom moves its least recently used data blocks to transfer
area and make enough space for new data to be loaded onto
the memory.

The key purpose of implementing transit area is to increase
the availability of attraction memory for the data blocks with
high cache hit ratio.

We implemented transit area with a single map which con-
tains the blocks and uses their identifiers as keys. This enables
users to find, delete, and add a new block with a complexity of
O(log(n)). A specific class: secondary_memory.h gives
pre-built optimized functions to access, update, and delete
different blocks that are available in the Map.

III. Secondary Storage: The CedCom architecture involves
secondary memory for storing replicas. The key purpose is
to make CedCom fault tolerant. The secondary devices of
compute nodes store replicas of data blocks in neighbor-safe
style. In this approach, a replica of a data block stored in the
attraction memory of a node (say A) will be stored in the
secondary memory of the neighbor node (say B). This will
prevent the data loss if node A crashes.

B. Local Directory: The local directory has been in-
troduced in CedCom architecture for indexing the locations

and status of data blocks contained in compute nodes. The
locations are: Attraction Memory, Transit Area, and Secondary
Storage. The local directory reduces time to read, find, and,
write data blocks. Without indexation, these operations are
time consuming because the system must scan various loca-
tions sequentially. The directory provides exact locations of
data blocks and hence, accelerate the speed to finding data.

C. Versioning System: A version management system has
been developed to avoid data loss. The CedCom architecture
enables a compute node to create its snapshot and storing
them in secondary storage. The snapshots of compute nodes
are called versions. Each snapshot corresponds to a specific
restoration point. However, storing a snapshot can be expensive
in terms of storage space. The storage can be overflowed. In
order to avoid overflow of local storage, we limit the number
versions of nodes to 3. In case the storage is full, the oldest
version will be removed automatically. However, the users can
migrate the old versions to another server.

D. Operating principle: The operating principle of a com-
pute node is complex, because a number of parallel operations
will be carried out by the node at runtime, especially main-
taining the coherence of data is non-trivial. We implemented
various operational components to parallelise the operations
that a compute node performs at runtime. They are described
as follows:

I. ComLoader: This is an important component of the
CedCom architecture. It performs primary operations such
as starting or stopping components of a compute node. It
processes instructions received from the directory node. Also,
it performs save operation to store the snapshots of recent
state of compute nodes. For instance, if a compute node is
shutdown normally, the save on exit option pops up and then
the ComLoader saves the contents and node information as a
file in the secondary storage and reloads it when the node is
restarted. For each save operation, the ComLoader creates a
new version of snapshot.

II. Block Manager: To keep data blocks contained in the
compute nodes consistent, we implemented a Block Manager.
The main tasks of this component are, moving and adding
data blocks in memories. In CedCom, when the data blocks
arrive, they are added in input queue which stores the blocks
temporarily. The block manager calculates the hash keys of
incoming blocks and stores them in the appropriate sets of
attraction memories. If the sets are full, the block manager
automatically moves the oldest blocks into Transit Area. This
frees attraction memory to load new data blocks. Finally,
the block manager updates the local directory to maintain a
coherence between the block identifiers and their locations.

III. Transit Area Manager: The Transit Area Manager
is implemented to manage the blocks stored in the Transit
Area. The main purpose of developing this component is to
manage transit areas of a cluster efficiently and to increase
the availability of the attraction memories for data blocks with
high cache hit ratio. This component manages transit storage
and finds hosts to migrate the data blocks.

In order to migrate blocks, the transit area manager contacts
the directory node of a cluster to find a compute node that can
host data blocks located in a transit area. If the directory node
finds host then it returns information to the requester node.



Then, the transit area manager transfers data blocks to the
host node. The block stays in transit areas until a host node is
found.

IV. Heartbeat Manager: This component is responsible
for managing one-way messages from the compute node to
directory node. It triggers messages at a regular interval and
sends to directory node. This signal is an indication for
directory node that compute nodes in a cluster is alive. The
message body contains various information such as availability
of free spaces in the nodes and the memory usage ratio. Note
that, the manager will not initiate connection with the directory
node on the Heartbeat port. This task is done at initialization
phase.

V. Replication manager: Two main functionalities of the
replication manager are: (i) it enables storing replicas of data
blocks in secondary storage of a node and (ii) it enables
transferring a replica of a data block to the attraction memory
of a compute node. The manager enables to access data in
replication area of secondary storage. No other data is allowed
in this restricted area. A strict access control guarantees
data consistency. In CedCom architecture, each node has a
specific port to create an asynchronous server specifically for
replication.

The replications are managed by directory node and there-
fore, this particular component is deployed on this node. We
developed a replication directory in our architecture. This
directory contains information such as data blocks that need
to be replicated. The manager contacts the host compute node
and requests to create replicas of data blocks. The compute
node creates replicas and stores them in replication area. It is
worth noting that only one replica of a data block is allowed
in attraction memory.

VI. Backup Manager: A compute node may shut down.
Since CedCom is an attraction memory based architecture, the
information of the node (such as the information related to
Attraction Memory, Transit Area, and Local Directory) and
data blocks must be persisted. CedCom stores snapshot of
compute nodes in their secondary storage devices. The node
information and data blocks are stored at a regular interval to
save the most recent changes in attraction memory. Also, the
directory and the transit areas are stored.

Note that the information is saved only once. The Backup
Manager updates the information periodically rather than writ-
ing the same information repeatedly on secondary storage.
Since writing node information and data blocks are time
consuming, the ‘Block Manager’ launch multiple threads to
parallelize this operation.

VII. Block Registration Manager: The ‘Block Registration
Manager’ is responsible for registering the inbound data blocks
from clients. It contacts the directory node and assigns a unique
identifier to new blocks. The CedCom architecture enables
generating several threads to perform this task concurrently.

2) The Directory Node: The directory node is essentially a
shared metadata server in our architecture. In CedCom, each
compute node can act as a local metadata server because, each
node has a local directory that supplies a limited amount of
meta-information. However, the information is purely about the
data blocks stored in the local node. Thus, a global metadata

server has been developed to deal with some specific situa-
tions. For instance, the local metadata servers usually do not
have sufficient information about data blocks stored in other
nodes of a cluster. Conventional COMA does not have any
directory node, rather, it relies on local metadata. In this case
CedCom architecture adopts Hadoop’s architectural principle
a global metadata server that receives requests coming from
the compute nodes.

Big Data applications can generate billions of blocks dis-
tributed to thousands of nodes. Thus, storing global metadata
in compute nodes may not be a viable option. The reasons
are two-fold: it will consume the attraction memories or
transit areas of compute nodes and maintaining the updates
of distributed metadata server can be a painstaking job and
computationally expensive. The former is a well-understood
problem whereas the latter is communication network related
problem. For each write, all metadata servers have to be up-
dated, which will promote an exhaustive number of messages
exchanged between the nodes. This will cause high traffic in
the network. Consequently, the job processing time will be
increased. In some case, processing time can be increased
dramatically.

Considering these issues, the CedCom architecture intro-
duces a specific node to take the role of storing and managing
a Big Directory which stores the location of all the blocks
distributed across the compute nodes. We called this node
’Directory Node’. This node is aware of both locations of
different blocks and active blocks which is a similar approach
to Hadoop [2] but simpler. Additionally, this node also
manages the block replication system. Figure 4 shows the
directory nodes.

Fig. 4. Structure of the directory node

Below, we describe different aspects of the directory node.

A. Server Operations: In CedCom, the computes nodes are
connected with the directory node using peer-to-peer technol-
ogy. The connection between the directory node and the com-
pute nodes are permanent. The connection has been classified
into Communication Connection and Heartbeat Connection.
Note that, the directory node communicate with compute nodes
asynchronously. Therefore, the node is able to receive and



manage hundreds of requests from many nodes simultaneously,
using multi-threading techniques.

I. Communication Connecter: The compute nodes contact
directory node for various purposes such as, to know about
the location of a data block, to request to find available space
for data blocks etc.. In CedCom, a Communication Connecter
has been implemented to establish connections between the
compute and directory nodes. A connection is established by
following a sequence of steps: first, the directory node checks
the IP address of a compute node in its directory (note that
the IP addresses are stored in the directory node through a
registration process that is done when a compute node is
connected with directory node for the first time). If an IP
address is not found in the directory, the directory node starts
registration process. It creates a new unique node identifier
and assigns it to the corresponding compute node which opens
the new connection. If an error occurs during this phase, the
compute node is immediately turned off.

Once a connection is successfully established, the directory
node performs the following tasks:

• turn off the node (with or without performing save
operation)

• duplicate data blocks
• restore data blocks in the attraction memory or transit

area
• create restoration point of compute nodes
• restore a compute node by reading the node informa-

tion snapshot which was taken while switching off the
compute node

On the other hand, the compute node uses the socket to
carry out the following actions:

• request for information about a block location
• request for the IP address of a specific node
• register a new block, or a group of blocks
• disconnect the node from the directory node
• sending an update signal to notify the move of a block

in the local attraction memory

We implemented a protocol to handle requests from com-
pute nodes to the directory node. The request messages must
comply the protocol. The requests messages are categorised
into command requests and data requests. These are briefly
explained in the following.

a. Command Requests: The commands requests are con-
cerned with requesting information or operations. The size
of the body of command request messages is small. It does
not exceed fifty characters. The format used for this type of
requests is as follows, a four characters header for writing
operations and the remaining part of the header is used for
instructions. Regex is used to identify and extract information
from the request messages.

b. Data Requests: The data requests are concerned with
sending data blocks from one node to another. Unfortunately,
the Regex technology has been proved slow for data requests
because, the size of message body is too large. Therefore,
the analysis of messages consumes time. It is worth noting
that upon receiving every request message is analysed. We
cleverly avoid analysing the body of data request messages by

separating it from the header. The CedCom architecture allows
the analysis of meassge header only. Currently, we use || − ||
separator.

c. Communication Protocol: The CedCom architecture has
its own low-level communication protocol. So far, we have
implemented the following protocols:

• The compute nodes open the connection with directory
node by using the asynchronous connection provided
by the ‘boost.asio’ API (Application Programming
Interface).

• The directory node registers the connection by assign-
ing a unique node identifier corresponding to the IP
address of compute nodes

• The directory node sends the registration notification
to the compute node:
- If successful: the identifier of the node is created

RSTR : N < (node_identifier) >;

- If fails: an error message pops up
RSTR : ERR : (erro_message);

• The compute node will use this connection to make
request for information about the location of a block:
- Request:

BLCK : BLOCK < (block_identifier) >;

- Response:
BLCK : BLOCK < (block_identifier) >,NODE <

(node_identifier) >,ADDRESS < (ip_address : port) >;

• The compute node will also use this connection, to
obtain a group of unique identifiers for the new blocks
received from an external client:
- Request:

BLRG : RANGE < (number) >;

(Range is used to determinate the number of identifiers
requested.)
- Response :
BLRG : MIN < (minidentifier) >,MAX <

(maxidentifier) >;

• The directory node can use this connection to turn
off a compute node with or without previously saved
contents:

STOP : SAV E < true/false >;

II. Heartbeat Connection: In our architecture, a separate
connection type is implemented to send heartbeats from the
computing nodes to the directory node. The Heartbeats are es-
sentially signals to the directory node, which indicates whether
a compute node is alive or dead. As mentioned earlier, the
compute nodes send heartbeat signal at a regular interval.

To register a heartbeat connection, the nodes must already
be registered with the directory node. The registration will
result in opening a socket between compute and directory
nodes. By using this socket, the compute nodes send signals
to the directory node. If registration of a compute node is
unsuccessful, it will be turned off and an error message will
pop up.

As mentioned in the beginning of this section, in addition
to heartbeat signal, the compute nodes send other information
to the directory node. The information are listed below:

• Free Space of the nodes



• Memory utilisation ratio of the nodes

The directory node generates and persists metadata and
the time-stamp of compute nodes. For instance, it tracks the
latest time-stamps of heartbeats and stores it. An arbitrary
time is defined as timeout which allows the directory node to
determine whether or not a compute node offline. This default
timeout is currently set to 5 seconds.

a. Heartbeat Protocol: We have developed a protocol
for the communication between compute and directory nodes
regarding heartbeats. This protocol uses the heartbeat ports. It
is briefly explained below:

• The compute nodes open connection with the directory
node by using asynchronous connection provided by
the ‘boost.asio’ API.

• The directory node registers the Heartbeat by
bundling the IP address of compute nodes with their
unique identifier

• The compute nodes send an initialization message
to the directory node to provide information about
the port which the client should use to establish a
connection:

INIT : C_PORT < (Port_number) >;

• The compute node sends heartbeat message at a regu-
lar interval along with the information of its memory
utilisation

BEAT : FREE_SPACE < (size_in_Mo) >
,RATIO < (percentage_number);

• The directory node receives heartbeats, stores infor-
mation, and updates the latest heartbeat time-stamps

• The directory node triggers an error message upon
occurrence on an error:

ERRO : (error_message);

• If required, the directory node uses the Heartbeat
connection to turn off a node (with or without saving
its contents):

STOP : SAV E < true/false >;

III. Operating Principle: The operating components and
principles of directory node are explained below.

• Like compute nodes, directory node has a component
called ComLoader that starts and stops it other compo-
nents. In addition, it saves the contents of the directory
node on secondary storage if it is turned off.

• The directory node has a component for checking
whether or not the computing nodes are alive. It
checks the status by comparing the latest time-stamp
with the predefined timeout. If a node is not alive, this
component places it in the restoration node queue.
Since the nodes should be restored efficiently, the
CedCom architecture initiates a new thread to speed-
up the restoration process.

• The CedCom architecture has a component for man-
aging block reload. If a compute node stops respond-
ing, this component will restore all of its blocks in
memory. The reloading process is composed of four
steps. First, the component identifies the data blocks
that were stored in the failed compute node. Then,

it identifies the compute nodes that have the copies
of the blocks. In the third step, it sends a request to
these nodes to transfer the blocks to the failed compute
node. Finally, it updates the directory.

C. Advanced Operations

This section presents a list of advanced operations which
can be performed by the components that we have developed
in this paper. The CedCom architecture enables performing
these operations during transferring and creating data blocks.
They are briefly explained in the subsections below.

1) Block Transfer: This section summarises the steps of
transferring blocks from the source to target compute node.

The steps are listed below:

• A compute nodes uses communication connecter to
establish connection with the directory node and re-
quest the locations of required blocks,

BLCK : BLOCK < (block_identifier) >;

• The directory node uses the block directory to locate
requested blocks, and then sends a response to the
compute node

BLCK : BLOCK < (block_identifier) >,NODE <
(node_identifier) >,ADDRESS < (ip_address : port) >;

• The compute node opens a temporary connection
with the compute node that is hosting required data
blocks, and requests for the blocks by using the block
identifiers as reference.

BLCK : BLOCK < (block_identifier) >;

• Alternatively, a compute node can make a request for
processing job to the compute node which have the
copy of data block. However, in this case the host
compute node must be available for performing the
required operations. If yes, then the requester and host
compute node process the transmission of computa-
tions e.g., executable jar files instead of transferring
data packets.

BLCK : TRANS_COMP_REQ;

• If a block is transferred or just copied, the source
node sends the block by using a standard data package
format and specifies in the header of the package.

DATA : BLOCK < (block_identifier) >
,COPY < (true/false) > || − ||(data)

• Upon arrival, the requester compute node stores the
data blocks in its attraction memory and then, sends a
notification to the directory node to update the latest
location of the blocks.

TRFR : BLOCK(block_identifier);

• The directory node updates its block directory and
sends an invalidation request to the compute nodes
which have the old copies of the data blocks. Upon
receiving the request, the nodes invalidate the copies.
This avoid the data inconsistency and hence, the dirty
read.

RMOV : BLOCK(block_identifier);



2) Block Creation: This section summarises different steps
which are carried out when a client sends data blocks to the
compute nodes.

• The client establishes a connection with the directory
node which sends information regarding a connection
with the compute nodes
B_SIZE < (size) >, [{”address” : ”(ip_address)”, ”port” :
”(port)”, free_space” : ”(size)”, ”ratio” : ”(percentage)”}]

• The client establishes connection with the compute
nodes contained in the clusters. It partitions input
files into different packages. Each package can contain
maximum data size that is suggested by the directory
node. The partition may result in a single package or
many smaller packages, which depend on the size of
input files and the predefined threshold of the package.
- If data is sent as a single part:

DATA : N < (filename) > || − ||(data)
- If data is divided into many smaller packages:

PDTA : N < (filename) >,P <
(part_number) > (LAST )|| − ||(data)

• To ensure the data integrity and flow, the compute
nodes send an ACK signal to the client for each
message is received by them.

PDTA : ACK < (part_number) >;

• The data blocks received by the compute nodes must
be registered with the directory node. By using a sys-
tem of range, a node can obtain successive identifiers.
Additionally, the input filenames are transferred to
associate the filenames with the data blocks in the
internal directory of compute nodes. This essentially
indicates that the node will always group them by
filename during block transfer.

BLRG : RANGE < (nb_block) >,FILE <
(filename) >;

• Upon receiving registration request from the compute
nodes, the directory node provides block identifiers to
the requesting compute nodes.

BLRG : MIN < (identifier) >,MAX <
(identifier) >;

V. EXPERIMENT

In this section, we present the results of our experiments
which shows the robustness of CedCom in loading Big Linked
Data [8]. Also, we demonstrate its performance in terms of
data loading time, data transfer rate, and data packet loss
during transmission.

A. Experiment Setting

We conducted our experiments on Grid5000 [9] which is
a grid computing platform for high performance computing
(HPC). The platform has different sites or resource centers. We
performed experiments on two different sites Lyon and Rennes.
2,3 In Grid5000, upon receiving a job request, an automatic

2Grid5000 Lyon: https://www.grid5000.fr/mediawiki/index.php/Lyon:
Home,

3Grid5000 Rennes:https://www.grid5000.fr/mediawiki/index.php/Rennes:
Home

resource scheduler reserves resources based on availability. We
conducted our experiments on three different clusters: Taurus,
Hercule, and, Parapide that consist of seven, eleven, and and
twelve nodes respectively. Note that the nodes are physical.
The hardware specification of the nodes can be found in Lyon
and Rennes resource sites.

Three datasets were used in our experiments: 19.775 GB,
200 GB, and 102 GB which contain approximately 153
Million, 1.3 Billion, and 900 million Notation 3 (N3) triples
respectively. 4

Experiment Steps

While running, CedCom must go through the following
steps:

Step 1: The data distribution client opens a connection with
directory node (DN). Once the connection is established, the
following steps are performed.

1) The client contacts the directory node on a specified
address and port. The client message contains the
amount of data it wants to distribute to compute
nodes.

2) The directory node receives the message, scan the
metadata table to find available space, and then sends
a pre-formatted string to the client containing the
information as follows: maximum size of one data
block and for each node, free space, IP address and
port.

The IP and PORT are used to establish the data connection
between the client and compute nodes. Client’s distributor
sends data to compute nodes according to free_space (in MB)
and ratio (that are shown in the above).

Then, the client stops the connection with directory node

Step - 2: The client opens connection with compute nodes and
distribute data blocks. The nodes perform the following steps
to distribute data blocks.

1) The client opens a socket with each compute node in
cluster using request header.

2) Then the client sends data to the compute nodes.
A loop is defined to distribute data iteratively until
all the blocks are sent to the compute nodes. Two
important steps of data distribution are as follows:
• The client partitions input files into many

parts according to the maximum size sug-
gested by the directory node. The client sends
data packets begin with a header “DATA ;”
(8 bytes).

• The compute node receives data, stores
it, and sends a message begins with
“DATAACK;”(8 bytes) to the client.

3) Once the client closes socket connection, the compute
nodes know immediately that the entire file has been
transmitted.

B. Results and Discussion

Table I presents the results of experiments we performed
with CedCom in this paper.

4Notation 3: http://www.w3.org/TeamSubmission/n3/

https://www.grid5000.fr/mediawiki/index.php/Lyon:Home
https://www.grid5000.fr/mediawiki/index.php/Lyon:Home
https://www.grid5000.fr/mediawiki/index.php/Rennes:Home
https://www.grid5000.fr/mediawiki/index.php/Rennes:Home
https://www.grid5000.fr/mediawiki/index.php/Lyon:Hardware
https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware
http://www.w3.org/TeamSubmission/n3/
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The experiments show that CedCom loaded datasets suc-
cessfully on attraction memory. However, the second exper-
iment was not successful. The Table I shows that CedCom
performed better in the first experiment. The 19.2 GB dataset
was loaded in 11 minutes 8 seconds. We found CedCom faster
than HDFS loader which we experimented in [10]).

However, in the third experiment, the performance of
CedCom in terms of data transfer rate was three times worst
than the first one. Yet, the data packet loss was ‘0’ which
is relatively better than the first experiment. We performed
the third experiment in Grid5000 Rennes site. Based on our
observation, we identified two factors that might be respon-
sible for the performance degradation in the last experiment.
First, erratic bandwidth which we observed during experiment.
Second, the nodes used for the final experiment have lesser
processing power than the ones used for the first experiment.

The second experiment was failed due shortage of of space.
To be more specific, the size of the dataset was greater than
the sum of main memories of all nodes. In such cases CedCom
stops data distribution.

It is worth noting that, CedCom retransmits the lost pack-
ets. For instance, in the first experiment 451 packets were lost
during data transmission. However, they were retransmitted
successfully. This implies that eventually, there was no packet
loss.

VI. RELATED WORK

In this section we study the works related to system
architecture and memory management of distributed, parallel,
and high performance computing.

Shared memory architecture is a widely used one for
handling high-performance applications. Until now, several
approaches have been proposed. These are discussed in the
following:

• Virtual shared Memory (VSM): This term is commonly
used to describe the systems which provide a shared
address space by using hardware assistance [4]. It is
implemented on top of this shared address space.

• Shared Virtual Memory (SVM): Unlike VSM, SVM
describes a system which provides a shared mem-
ory with a software implementation on top of the
operating systems (OSs) [4]. This architecture em-
ploys a MMU (Management Memory Unit) to provide
coherent shared address spaces. Unfortunately, this
architecture is not OS transparent because it uses
specific operating system functions to share memory
with the other processors.

• Distributed Shared Memory (DSM): It is another mem-
ory architecture that enables accessing shared data
without replication. Replication is beyond the scope
of this architecture, therefore, DSM does not maintain
data coherence. In consequence, the memory address
spaces in this architecture must be managed explicitly
by the user, which is a painstaking task. This is one of
the main reasons this architecture has not been adopted
by many systems.



• Cache Only Memory Architecture (COMA): In
COMA, the memory organization is similar to Non-
Uniform Memory Access (NUMA). However, instead
of storing data in a fixed location, COMA uses the
storage spaces of different processors as a large cache
[5] called attraction memory. The attraction memory
enables accessing data blocks to processors faster than
other memory architecture such as SVM. Additionally,
compared to NUMA (which enables storing a block
of data using a unique address and copying it in all
processors’ caches), COMA stores blocks only once
and migrates them dynamically whenever a processor
requires them. COMA reduces data copies to many
processors. However, in COMA, a block can be dupli-
cated in some specific cases for instance, data required
by two or more nodes at the same time. It caches
data in main memory, which can significantly promote
the performance of data retrieval because the access
time required to load data from secondary storage is
eliminated in this architecture [11].

We found two main techniques for accessing memories:
Uniform Memory Access (UMA) and Non-Uniform Memory
Access. In UMA, accessing data depends on a single bus and
all processors share the physical memory uniformly [5]. This
essentially means that the data is stored in a location (often in
a centralized server) that is accessible by all processors uni-
formly. This architecture is effective when many clients need to
share data, yet it is insufficient for Big Data applications. The
reasons are two-fold: the data size often exceeds the capacity
of a single server and the nodes need a permanent access to
data, which may cause network congestion.

In NUMA, the memory is divided between different pro-
cessors, and each block has a fixed location. The processors
will access their local memories, which is faster than remote
access [5]. This architecture does not support data migration;
more specifically, the data blocks cannot be migrated between
nodes. The only way of making data available to the processors
is to have a copy in the local cache of the processors. This
architecture needs an efficient cache coherence protocol to
guarantee the consistency of data blocks.

A distributed system comprises one or more clusters.
Typically, each cluster consists of multiple physical/virtual
nodes that can have several processors. While running, if a
processor needs a block of data, it is copied to its cache.
Consequently, a large number of copies of data blocks are
diffused within and across the nodes of a cluster. These copies
must be consistent to avoid any dirty read (incorrect data). If
no write operation is performed, the blocks remain consistent
without needing any management tasks. However, in case a
data block should be changed, the copies of corresponding
block needs to be updated to keep them consistent with the
latest version of the data block.

Different methods to maintain data consistency in a dis-
tributed architecture already exist. The Write-invalidate proto-
col relies on write-once read-many principle. It allows only
one write operation at a time. However, it allows multiple
read operations. When a node updates a block, it sends an
invalidate signal to all nodes that have the copy of this block
and write new data in the block. The other nodes then flag

their copies ‘obsolete’ and remove them. If the copy is needed
for computation, the requesting nodes request a copy of the
new block directly to the node that performed the update
[4]. The main advantage of this protocol is the data is not
broadcasted when an update occurs. Additionally, it allows
recovering data progressively. In Write-update protocol, the
node (which performs an update) sends the data to all nodes
which have the copy of that block [4]. This guarantees the
usability of data blocks because, all blocks residing in the
nodes are essentially up-to-date. This protocol is hard to apply
in large networks because it generates heavy traffic, which can
quickly saturate the connection.

Of these two protocols, Write-invalidate is more suitable
for a large architecture where data is cached by a wide number
of processors simultaneously, whereas, the Write-update is
preferable to those where data are not frequently cached, yet
faster access is required. The systems which rely on central
memories (as opposed to attraction memories) use one of these
two protocols.

The write-through approach updates the central memory
each time an update occurs. In write through systems, the
main memory is always up-to-date [4]. The other approach is
called write-back which does not synchronise main memory
of a node at once [4]. Rather, the other processors contact the
node(s) that have the latest copy of the block. Additionally, this
protocol updates memory if the data block is removed from
the cache. This protocol avoids unnecessary accesses to central
memory, which is useful particularly for the architectures
where data is often changed or modified.

There are some advanced protocols that optimize updates
during the write operations. The Write-once protocol is one
of them. It introduces several states (namely ‘not modified’,
‘possibly shared’, and ‘reserved’) of operations performed on
memory pages. It reduces overall bus traffic by performing
write-update operation during the first write and then it carries
out write-invalidate operation [12] [4].

The protocols discussed in the above are not suitable
for multi-bus architectures. Thus, a special type of cache
coherence protocol called directory based cache coherence
[13] was introduced. This protocol employs specific directories
for maintaining coherence between caches. When an entry is
changed, the directory either updates or invalidates the other
caches with that entry.

In the full map directory architecture, the directories con-
tain a list of processors. A single bit is used in the directories to
know whether or not a processor contains different blocks [13].
In this architecture, when a cache miss occurs, the processor
can contact any directory to locate the data block. Additionally,
for each update, all directories must be updated. For this
architecture, the size of the directories are very important
because, they store the information of all processors. Another
approach called limited directory is almost the same as the full-
map directories, except for the directories in this architecture
are not storing all system entries; instead, only a limited
number of parts are stored. This solution reduces the storage
space that is required by the directories, while it limits the
number of blocks which can be cached simultaneously.

Finally, the chained directory distributes the directory
between different caches. This approach addresses the size



problem of directories without restricting the number of shared
block copies. Chained directories keep tracks of shared copies
of a particular block by maintaining a chain of directory
pointers.

The Data diffusion machine is a multiprocessor memory
architecture which relies on COMA principle. The data is
stored in different attraction memories; each of them is as-
sociated with a processor. When a block of data is needed by
a processor, it is migrated from the source attraction memory
location to the target location [4].

In DDM architecture, the nodes are not explicitly inter-
connected, however, they communicate with each other using
a hierarchical system of directories. The directories store
information of the data blocks that are stored in the leaf
nodes [5]. The data is stored in set-associative memories.
This approach enables the directories to locate data blocks
efficiently. Various directories of this architecture contain in-
put/output buffers, which enables storing intermediate results
while transferring data from source to target locations. DDM
provides a shared memory abstraction that encapsulates the
underlying mechanisms and provides users a subset of total
distributed data in a timely manner.

The main challenge of classical hierarchical DDM archi-
tecture is high-traffic, which may go beyond the control when
too many data blocks need to be migrated at the same time.
It can cause read and write buffer overflow, and can lead to a
congestion and thus, it can slow the block transfer significantly.
Several solutions have been proposed to resolve this problem.
For instance, using routers for an optimized transfer of data
block between different directories [14]. Another approach is
called Horn DDM which essentially connects the physical
nodes using a bus based point-to-point communication system
[6]. This reduces congestion because the data can use different
paths to be transferred between the nodes. However, this
approach increases the number of intermediate nodes.

From the discussion it is clear that there are several efficient
memory architecture such as NUMA and COMA for high-
performance computing. We adopted COMA, however, we
extended conventional COMA by proposing a new protocol
and new functionalities such as replication function for storing
copies of data blocks in secondary storage. In addition, we
adopt some characteristics of hadoop distributed file system
(HDFS), which are missing in COMA. These turn the Ced-
Com architecture into functionally more efficient than existing
COMAs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the CedCom architecture.
We provided a detail of how we developed the architecture.
We discussed the implementation of its components such as
directory node, compute node, etc.. Also, we described the
implementation of attraction memory. We used an efficient
technique called n-way associative cache which enables high-
speed data access and increases the cache hit ratio significantly.
Additionally, we implemented a data migrator that enables
migrating data blocks automatically from the source to the
target nodes in the clusters.

This architecture offers many functionalities yet, several
works must be done. The works which we planned to carry out

near future are as follows. The experiment that we presented in
this paper is incomplete or in other words weak. Therefore, we
plan to conduct a rigorous test to evaluate all the functionalities
of the architecture. We plan to replace the set associative cache
with the skewed associative cache which is a more efficient
approach. Also, we plan to develop a component that can
migrate data in an intelligent way such as by adapting the
bandwidth. Finally, we will complete the development of the
protocols of CedCom architecture.
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