
✬

✫

✩

✪

C E D A R

Technical Report Number 14

GAIA

An OWL-based Generic RDF Instance Generator

Tanguy Raynaud, Rafiqul Haque, Samir Amir, Mohand-Saı̈d Hacid

November 2014

Publication Note

Corresponding Author:

CEDAR Project

LIRIS - UFR d’Informatique

Université Claude Bernard Lyon 1

43, boulevard du 11 Novembre 1918

69622 Villeurbanne cedex

France

Phone: +33 (0)6 28 07 34 77

Email: cedar@liris.cnrs.fr

Copyright c© 2015 by the CEDAR Project.

This work was carried out as part of the CEDAR Project (Constraint Event-Driven Automated

Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1 (UCBL). It may not be

copied nor reproduced in whole or in part for any commercial purpose. Permission to copy

in whole or in part without payment of fee is granted for non-profit educational and research

purposes provided that all such whole or partial copies include the following: a notice that

such copying is by permission of the UCBL, with an acknowledgement of the authors and in-

dividual contributors to the work; and all applicable portions of the copyright notice. Copying,

reproducing, or republishing for any other purpose shall require a license with payment of a

fee to the UCBL. All rights reserved.

CEDAR Technical Report Number 14

GAIA

An OWL-based Generic RDF Instance Generator

Tanguy Raynaud, Rafiqul Haque, Samir Amir, Mohand-Saı̈d Hacid

cedar@cedar.liris.fr

November 2014

Abstract

An RDF (Resource Description Framework) instance generator produces RDF

triples by complying with an ontology that defines classes, subclasses, relations,

and constraints. There are many instance generators which rely on Web Ontology

Language (OWL) meaning that these generators can read only the ontologies

which are written in OWL. However, the existing generators are locked-in to a

specific ontology, which means the generators can read only a specific ontology.

For instance, the LUBM generator can read only the LUBM ontology, which is

clearly a limitation as it is not able to read any other ontology such as biomodel

ontology. This promotes the need for a generic RDF instance generator that is

able to read and parse any ontology written in OWL. In this technical report, we

describe a generic RDF instance generator. We develop this generator to enable

users to use their own ontology to generate RDF triples which can be used to

meet their specific needs.

Keywords: OWL, RDF, Semantic Web, Ontology, Taxonomy, Instances generation

Table of Contents

1 Introduction 1

2 Motivation 2

3 Solution Architecture & Life cycle 2

4 Development of the Generator 3

4.1 The Extractor . 3

4.2 The Instance Generator . 6

4.2.1 The Initial Version . 6

4.2.2 The Final Version . 10

5 Demonstration 12

6 Evaluation 15

6.1 Experiment Setting . 15

6.2 Results and Discussion . 15

7 Conclusion 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

1 Introduction

Generalization and specialization are two distinct styles of designing software appli-

cations. Generalization enhances the usage of a solution whereas specialised solutions

cover specific contexts. However, developing generic solutions is enormously chal-

lenging; in fact, it is far more challenging than the specific ones. Specifically, de-

veloping generic functional features of a solution is an intricate problem. Thus, such

solutions are not readily available. For example, there is no generic solution which can

generate Resource Description Framework (RDF) instances from any ontology even

if there is no technological heterogeneity.1 An ontology can be defined as a formal

document which contains knowledge. The document is composed of

• concepts (classes) - which a representation of a thing, data properties,

• individuals - which is an instance of a concept,

• relations - which is a link between a class with one another. Furthermore, prop-

erties are classified into two:

• data properties, and

• object properties (a link to another object).

Every ontology has a specific definition of the hierarchical structure of concepts. Ad-

ditionally, the definition of the axioms of different ontologies varies. Therefore, two

ontologies, although developed using the same language such as Web Ontology Lan-

guage (OWL), a generator cannot read or parse. 2 For example, LUBM is an RDF

triple generator which can read only a specific schema called univ-bench.owl. 3

Any other ontology if supplied to this generator, it will produce an exception. Such

specialized instance generators are bound to the definition of specific classes (con-

cepts), subclasses (objects), and attributes contained in a given schema - which is a

limitation of the state of the art.

In this research work, we take an initiative to overcome this limitation. we develop

a OWL–based generic RDF triple generator which enables to loading any ontology

schema written in OWL and to producing RDF instances by complying with the on-

tology. We called the generator GAIA (Automatic Instance Generator for Abox). We

strictly rely on OWL because we found that almost all ontologies that are currently

available are defined/developed using this language. The wide adoption of this lan-

guage influenced our decision. This technical report provides the detail of the imple-

mentation of our generator.

This technical report is organized as follows. In section 2 we present the motivation

behind this work. Section 3 presents a high-level architecture of the generator. Section

4 provides the detail of the development of the generator. We conducted a few tests

which are reported in Section 4. We draw a conclusion of this research in Section 6.

1http://www.w3.org/RDF/
2http://www.w3.org/TR/owl-features/
3http://swat.cse.lehigh.edu/projects/lubm/

November 2014 Page 1 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

2 Motivation

As part of the CEDAR project, one of our goals was generating a large-scale RDF data

set from NCBI ontology. We found two well-known generators: LUBM and BSBM.

We first tried with the LUBM generator. We loaded ncbi schema “ncbi.owl” onto

LUBM engine and then we start the generator. However, it produces an error unknown

format while parsing the concept and properties. We encountered the similar error

during our experiment with BSBM. 4

After studying both generators, we conclude that they are functionally rich and can

efficiently be used as a black-box, yet they are locked-in to specific ontology schemas.

For example, LUBM is locked-in to univ-bench.owl ontology. This motivated us

towards the development of a generic OWL-based generator.

3 Solution Architecture & Life cycle

In this section, we present a high-level architecture of our generator. Additionally, we

briefly describe the instance-generation life cycle.

The generator consists of four components: a loader, a parser, an extractor, and a

generator. Figure 1 shows these components.

Figure 1: The Solution Architecture the Generator

• The Loader: It loads ontology schemas onto memory.

• The Parser: It parses the given schemas.

• The Extractor: It extracts classes, properties, and information. The extractor

extracts two types of properties: data properties and object properties.

• The Generator: It produces instances, store them in buffer, and then write them

in file.

4http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

November 2014 Page 2 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

The implementation of these components are discussed in section 4.

The RDF instance generation life cycle comprises six steps which are listed below.

• STEP 1: An ontology schema is loaded and parsed in this step.

• STEP 2: The classes contained in the schema are extracted.

• STEP 3: The data properties extracted in this step. This step produces a list con-

taining all data properties referenced in the ontology. Also, for each of property,

it extracts domains and range(which can be Integer, String, Double, Boolean or

Float.) Note that, a property can have only one range but many domains.

• STEP 4: The object properties are extracted in this step.

• STEP 5: In this step, the generator extracts (meta-)information about the con-

cept hierarchy. More specifically, this step identifies the relationships between

concepts, sub–concepts, and super–concepts. This step produces a java object

called OwlOntologywhich contains all information extracted by the API.

• STEP 6: This step produces the instances of the classes. The instances are

triples that are composed of subjects, predicates, and objects.

4 Development of the Generator

In this section, we provide the implementation detail of GAIA. We used Java develop-

ment environment. We used the OWL API for loading and parsing ontology schemas.

The API enables the generator to extract different classes and properties contained in

a given schema. In this research work, we concentrate more on developing the ex-

tractor and the generator. We describe the implementation of these components in the

following subsections.

4.1 The Extractor

The extractor consists of three components: the class extractor, the property extractor,

and the information extractor. Below, we provide a description of these extractors.

Class Extractor

For each concept of a given ontology, the class extractor creates an internal object

called TClass which is a kind of container. A TClass stores information about the

concepts, their relations with child nodes(sub-concepts), and properties of the concepts

contained in ontologies. Figure 2 shows the structure of the TClass.

Also, the class extractor discovers the hierarchical relation between a concept and its

sub–concepts and super–concepts. The pseudocode of the class extractor implementa-

tion is shown as Algorithm 1.

November 2014 Page 3 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Figure 2: The conceptual diagram of TClass

Data: An OWLOntology(ont) object from OWLAPI

Result: A Map<String,TClass> (map classes) containing all the classes of the

ontology

initialization;

foreach oClass in ont.getClasses() do

if not map classes.contains(oClass.getIRI()) then

map classes.insert(oClass.getIRI(), new TClass(oClass.getIRI()));

end

foreach subClass in oClass.getSubClasses() do

if not map classes.contain(subClass.getIRI()) then
map classes.insert(subClass.getIRI(), new

TClass(oClass.getIRI()));

end

subClass.addSuperClass(oClass);

oClass.addSubClass(subClass);

end

end

Algorithm 1: Extracting classes

November 2014 Page 4 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Data Property Extractor

The data properties cannot be extracted directly. The extractor first finds the domain

and ranges of a data property and then uses the domain to extract the data proper-

ties. The data properties are stored in corresponding objects (‘TClass’). In order to

store the data properties, each object (‘TClass’) uses a hash-table of type HashMap

HashMap<String, DataType>, where where the key of type String is the name

of the property, and the value of type DataType is the property. The implementation of

the data property extractor is shown as Algorithm 2.

Data: An OWLOntology(ont) object from OWLAPI, and a Map of

TClass(map classes) initialized in the previous step

Result: The data properties from the initial ontology are added to their respective

TClass

foreach oDataProp in ont.getDataProperties() do

Datatype type = new Datatype(oDataProp.getRange());

String property name = oDataProp.getName();

foreach oDomain in oDataProp.getDomains() do

TClass tDomain = map classes.find(oDomain.getIRI());

tDomain.addDataProperty(poperty name, type);

subClass.addSuperClass(oClass);

oClass.addSubClass(subClass);

end

end

Algorithm 2: Extracting Data properties

Object Property Extractor

The proposed generator relies on the OWL API to extract object properties with do-

mains and ranges.5 It is worth noting that a range of an object property can be a

concept contained in an ontology.

The object property extractor extracts these object properties through an association

with the corresponding domains and ranges. This properties are then stored in TClass

with HashMap<String,TClass>, where key denotes property name, and the

value is a reference on the TClass used as range.

Information Extractor

An ontology represents the hierarchical subclass relations among classes of the real-

world “thing”. The information of these relations are critical to create instances. Thus,

we developed an information extractor. It extracts information of relation between

classes and their subclasses and superclasses. In addition, it extracts information about

5http://owlapi.sourceforge.net/

November 2014 Page 5 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

subproperties and superproperties. Extracting this information is straightforward be-

cause in ontology, the properties of a class are inherited by its subclasses; the inheri-

tance relation enables the information extractor to extract the properties of superclasses

(we call them superproperties in this report) contained in a ontology. In order to get

all superproperties, we implement a recursive algorithm which is shown in Algorithm

3.

Input: a TClass(tClass), Map<String,Datatype> map super data properties,

Map<String,TClass> map super object properties

Result: The classes are recursively explored to extract all super properties

if not tClass.isExplored() then

foreach superClass in tClass.getSuperClasses() do
recursiveExploreSuperNodes(superClass,

tClass.getSuperDataProperties(), tClass.getSuperObjectProperties());

tClass.setExplored();

end

end

map super data properties.addMany(tClass.getSuperDataProperties());

map super data properties.addMany(tClass.getDataProperties());

map super object properties.addMany(tClass.getSuperObjectProperties());

map super object properties.addMany(tClass.getObjectProperties());

Algorithm 3: Recursive explore super nodes

At the end of object property extraction process, the generator stores all information

which is used later during the instance generation phase.

4.2 The Instance Generator

The instances generator has been implemented in two successive incremental versions.

The first version generates instances with data properties only. The subsequent version

produces instances with both data and object properties. In this section, we provide

the implementation detail of both versions.

4.2.1 The Initial Version

The first version of the generator can be used in a special case. To be specific, it

extracts instances from the ontologies which represent taxonomies only. A taxonomy

is a specific type of ontology, where relations between concepts and their child nodes

are defined hierarchically without defining any complex property such as symmetric

property of concepts. A taxonomy is an ontology without properties. Figure 3 provides

an example of a taxonomy.

During instance generation from such ontologies, the data properties of classes must

be propagated to all of its child nodes (sub-classes) in the hierarchy. The data proper-

ties can be any of the following types: Boolean, Double, Float, Integer, and

November 2014 Page 6 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Figure 3: An example of taxonomy

String.

Instances are generated in two steps. First, the generator copies the given ontology

file (loaded onto the main memory) and writes instances at the end of that file. Note

that, in some cases, the generator creates a new file and adds instances there instead

of adding them to the ontology file. Then, in the second step, the generator writes the

instances to the file stored in secondary storage. This approach frees main memory

significantly and thus, prevents memory overflow and optimizes the performance.

In the extraction phase, the generator defines an association between concepts and

the domains of data properties inherited from the super-classes. This information are

stored in TClass. This enables the generator to be more efficient. more efficient

because, for any concept, the generator creates its instances without the need to search

its super-attributes. Furthermore, our generator uses a buffer instead of accessing sec-

ondary storage devices (hard disks), which enhances its performance. Once the buffer

exceeds a predetermined storage capacity, its contents are moved to a file using the

WRITE() function. Then the buffer is automatically reset to empty state by the gen-

erator. The pseudocode in Algorithm 4 demonstrates the implementation of the initial

version and how it works. It is worth noting that this algorithm is integrated into the

final version.

Instance Generation Steps

Below, we provide the list of steps which show how instances are generated using the

initial version:

• The users should specify the number of instances to be generated for each con-

cept in the ontology. The value on the variable ‘number of instances’ can be a

November 2014 Page 7 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Input : The input file (iF ile), the output file(oF ile), the numbers of instance to

generate (min and max)

Output: The number of instances generated

initialization;

oF ile = copyFile(iF ile); foreach tClass in map classes do

int numberInstances = min;

if max > min then

numberInstances = randomInt(min, max);

end

for int i = 0 to numberInstances do

Individual ind = new Individual(tClass.getIRI);

foreach data prop in tClass.getDataProperties() do
ind.addRandomTypedAttribute(data prop.getPropertyName(),

data prop.getPropertyType());

end

end

buffer.append(ind.getRDF());

if buffer.size() > MAX BUFFER SIZE then

oF ile.append(buffer);

end

end

Algorithm 4: First version : only data properties

single value or a range.

• The generator creates an temporary object called Individual for each con-

cept.

• Then, RDF instances are generated using the individual. The name on the indi-

vidual is defined by concatenating the name of the corresponding classes and an

unique instance identifier (ex: www.ontologyIRI/myclass instance 1).

The unique identifier is incremented for each new instance.

• Then, a random value is chosen for all data properties of the instance.

• Finally, the instances are moved from the memory to a file.

Multithreading

Performance is the most critical factor of this way of proceeding. This solution for in-

stance generation focuses on maximizing performance. Multithreading allows a better

use of resources than sequential processing. To enhance performances of the genera-

tor, we modified the above algorithm to distribute the tasks among many threads. We

implemented three distinct multithreading models: Single-unit Threading, Dual-unit

Threading, and Mass-unit Threading. Figure 4 depicts these approaches.

November 2014 Page 8 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Figure 4: The different multi-thread implementations

A. Single-unit Threading

This model consists of two connected threads which perform complementary but dis-

tinct tasks, which is why it is called Single-unit Threading. In this model, in a cycle,

each thread performs one unit-task only: either generation of instances or writing in-

stances in files. We call the first thread the generator thread since it generates instances

and puts them in a queue. The second thread is the writer thread which dequeues in-

stances, and writes them into the output file.

After observation of actual runs, single-unit threading’s performance was not as good

as that of the single-thread’s. This was not what we had expected. In fact, the Single-

unit Threading approach consumes more time than the single-thread generator.

B. Dual-unit Threading

The Dual-unit Threading model is a multi-threading approach where each of two

workers performs both generation and writing simultaneously. In this approach, the

number of thread is limited to two. In order to avoid racing condition (for reserving

the main memory) we implemented the mutual-exclusion technique using the mutex

API. The API enables the generator to prevent the writer threads from competing for

memory access. In other words, when a thread uses the output buffer, the other threads

waits.

C. Mass-unit Threading

The Mass-unit Threading model enables using number of threads for performing the

generation and writing of instances. It is essentially the extended version of the Dual-

unit Threading model. We expected the Mass-unit Threading approach to supersede

November 2014 Page 9 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Figure 5: Inheritance of the properties

the performance of of the two other models. However, the experiments showed oth-

erwise. The performance of mass-unit threading model was the worst. According to

our observation, when running often, the threads the threads consume a considerable

amount of time waiting in the queue for the running thread to release the mutex. This

is for the case when all threads share a single mutex.

Based on our observation, we conclude that multithreading does not always guarantee

a better performance over single-threading. According to our observation the Dual-

unit Threading performs the best.

4.2.2 The Final Version

The final version of our generator is essentially an extension of the previous version.

We studied several ontology schemas where we observed that a large number of con-

cepts are connected with object properties. Therefore, in this version, we take the

object properties into account. Typically, the object properties are inherited from the

super classes. If a concept (class) is a range of an object property, subconcepts are the

range of that property as well. Figure 5 shows an example of inheritance of property

instances.

Unlike data properties, object properties are optional. For instance, many individuals

can be found without object properties in a generated data set.

An important extension of this version is instance materialization, which refers to

propagating instances of the concepts that are linked with other concepts in the ontol-

ogy.

November 2014 Page 10 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Input : a TClass(tClass)

Output: an Individual

if tClass.getRemainingInstances() > 0 then

tClass.decreaseRemainingInstances();

Individual ind = new Individual(tClass.getIRI());

foreach data property in tClass.getSuperDataProperties() do
ind.addRandomTypedAttribute(data property.getPropertyName(),

data property.getPropertyType());

end

foreach data property in tClass.getDataProperties() do
ind.addRandomTypedAttribute(data property.getPropertyName(),

data property.getPropertyType());

end

foreach obj property in tClass.getObjectProperties() do

if random() ¿ 0.40 then
Individual linkedInd =

CreateRecursiveLinkedInstance(obj property.getRange());

if linkedInd != null then
ind.addObjectProperty(obj property.getProperyName(),

linkedInd.getName());

end

end

end

buffer.append(ind.getRDF());

if buffer.size() > MAX BUFFER SIZE then

oF ile.append(buffer);

end

else

return null;

end

Algorithm 5: Recursive generation of linked instances

Furthermore, we implemented final version using block structure method. The in-

stances are generated into blocks, which then constitute clusters of instances. We use

a recursive algorithm (Algorithm 5 to generating blocks.

The instance-generation process of our generator comprises four steps.

1. The objects (TClass) are created in this step. An user can choose a range -

minimum and maximum number – of objects.

2. In this step, the generator first instantiates the concepts which are not a range of

any properties. This information is extracted by the information extractor in the

previous phase. Creating such instances is expressed as shown in Algorithm 5.

Algorithm 5).

November 2014 Page 11 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Since the object properties are optional, we a set default value (40%) of prob-

ability to estimate the likelihood that a concept is linked with another concept.

The generator repeats the operation recursively as long as the subsequent in-

stances have object properties. Then, the generator writes the output into the

system buffer. Once the buffer if full, the instances are moved to files.

3. In this step, the instances are generated from the concepts that are linked with

others through their ranges. As in the previous step, the previous steps, the

instance generation is carried out by the recursive algorithm shown as Algorithm

5).

Multithreading

In the final version, we extend the multi-threading algorithm that was developed in

the initial version. Note that, since we found through our experiment with the initial

version that the Dual-unit Threading is the most suitable approach, it is the one we use

for this version. Algorithm 6 provides the pseudocode of the multi-threading approach

underlying this version of the generator. The worker threads use the recursive algo-

rithm (shown as Algorithm 5) to generate instances. However, they use two different

buffers and write the output file sequentially.

5 Demonstration

We have implemented two distinct interfaces for using the generator: The Graphi-

cal User Interface (GUI) and the Command Line Interface (CLI). In this section, we

demonstrate both interfaces. We explain how these interfaces assist in using the gen-

erator.

The generator is launched using the GUI by clicking on the .exe icon. Figure 6 shows

the graphical interface.

Instructions for using to use the GUI are listed below:

1. The user chooses an ontology (until this step is done, others functionalities are

disabled). Alternatively, the user can manually type the name of the ontology.

2. The user clicks on the Load button.

3. The generator displays information about the ontology (IRI, number of concept

and properties).

4. (Optional)The user can add random properties to the concept. The user is al-

lowed to choose any type of data properties.

5. The user saves an updated ontology either in the original file or in a new file. By

default, an output file will be named OWLInstances.rdf, but the user is allowed

to rename it.

November 2014 Page 12 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Input : The input file (iF ile), the output file(oF ile), the numbers of instance to

generate (min and max)

Output: The number of instances generated

initialization;

oF ile = copyFile(iF ile); TClass[] class array = map classes.toArray();

worker1 = worker2 = new Thread

begin /**STEP1**/

while (int i = nextClass()) < class array.length() do

class array[i].initialization(randomInt(min, max));

end

end

worker1.join();

worker2.join();

worker1 = worker2 = new Thread

begin /**STEP2**/

while (int i = nextClass()) < class array.length() do

if not class array[i].isARange() then
createRecursiveLinkedInstance(class array[i]);

end

end

end

worker1.join();

worker2.join();

worker1 = worker2 = new Thread

begin /**STEP3**/

while (int i = nextClass()) < class array.length() do

while class array[i].getRemainingInstances() > 0 do
createRecursiveLinkedInstance(class array[i]);

end

end

end

worker1.join();

worker2.join();

Algorithm 6: Second version : with two workers

6. The user specifies the number of instances per Classes that should be generated.

This value is specified in the min and max fields.

7. The user can choose the materialization option.

8. In the final step, the user clicks on the “launch generation” button. A status bar

in the bottom of the interface shows the progression of the current operation.

Unlike the GUI, CLI is a command and parameter-based interface. As a result, any

incorrect input will fail to launch the instance-generation process, and cause it to

November 2014 Page 13 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Figure 6: The Graphical User Interface

abort. For instance, if an incorrect parameter is specified, the generator is immedi-

ately aborted and an error message is issued. The command to execute the CLI for

running the generator is

• java -(assign JVM heap space) -jar ../PATH

to OWL Gerator.jar FILE -F ../PATH to Ontology Schema

FILE -N Number of Instances Per Classes -O ../PATH

to Output FILE

Where:

• -F (denotes for file): path of the ontology on the file system;

• -N (denotes for number): number of instances to generate, per class (default :

3);

• -L (denotes for limit): The maximal number of instances per class (if more than

N, randomly defined in the interval);

• -O (denotes for output): The output file (by default, OWLInstances.rdf in the

same path than the input file);

• -M (denotes for materialization).

November 2014 Page 14 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

6 Evaluation

We conducted several experiments with GAIA. In these experiments, we evaluated

two aspects: (i) the generator’s the generator’s capacity to read any ontology written

in OWL and (ii) its performance. In this section, we describe the experiments’ envi-

ronment environment and the results.

6.1 Experiment Setting

We conducted experiments on the Grid5000 platform, which is a high-performance

computing platform.6 The platform is accessible through eleven different sites within

and outside of France. We used the Nantes access point.7 The site front-end has an

automatic scheduler that accepts requests of reserving resources and assigns a number

with the variable called ‘JOB ID’. In response to our request, the scheduler reserved a

node in the cluster called econome. The node specification is given below:

• Processor: Intel Xeon E5-2660, 8 cores

• Memory: 64 Gigabyte

• Cache: 10 32 KB (L1) + 256 KB (L2) + 25 MB (L3)

• Network: 10 Gigabit Ethernet

• Storage: 2 TB

We transferred ontology schemas and the generator from the local machine to the

remote server.

6.2 Results and Discussion

We used eight different ontologies in our experiments. We performed experiments

with the widely used LUBM and our own generator. The Table shows the results of

the experiment.

The table shows that GAIA successfully read and parsed all eight different ontologies

whereas LUBM was able to read only the univ-bench ontology. For all but the ”Univ-

Bench” othology, the LUBM system failed, where GAIA succeeded

Furthermore, the LUBM generator took 110 minutes for generating 99 Gigabyte data

set. The data generation rate was 900 Megabyte per minute. GAIA generated 261

Gigabyte in 48 minutes. The data generation rate 5437 Megabyte per minute, which is

almost five and a half times faster than the LUBM generator. In addition, we were able

to generate 1.85 Terabyte instances in 8 hours 19 minutes. This clearly demonstrates

that GAIA is able to generate Big data set.

It is worth noting that the comparison shown in our experiment is biased. While gen-

erating instances, LUBM carries out a lightweight reasoning to generate instances by

6https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
7https://www.grid5000.fr/mediawiki/index.php/Nantes:Home

November 2014 Page 15 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

Table 1: The experiments shows reading and parsing results

Ontologies LUBM GAIA

Univ-bench Successfully Read and Parsed Successfully Read and Parsed

AOO Read and Parsed failed Successfully Read and Parsed

AEO Read and Parsed failed Successfully Read and Parsed

ATO Read and Parsed failed Successfully Read and Parsed

APO Read and Parsed failed Successfully Read and Parsed

Bila Read and Parsed failed Successfully Read and Parsed

Biomodel Read and Parsed failed Successfully Read and Parsed

NCBI Read and Parsed failed Successfully Read and Parsed

satisfying OWL property constraints specifically, the owl:intersectionOf and

owl:someValuesFrom constraints. The former describes an individual which is

an instance of two classes. The latter describes a class of all individuals for which

at least one value of the property concerned is an instance of the class description

or a data value in the data range [cite]. For example, in LUBM ontology, there is a

someValuesFrom restriction shown below:

<owl:Class rdf:ID="ResearchAssistant">

<rdfs:label>university research assistant</rdfs:label>

<rdfs:subClassOf rdf:resource="#Person"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#worksFor"/>

<owl:someValuesFrom>

<owl:Class rdf:about="#ResearchGroup"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

In this example, the reasoner performs reasoning to find research assistants who be-

long to the class Persons and works for at least one research group.

Currently, GAIA does not perform any such reasoning and therefore, the dataset pro-

duced by this generator is not complete. Additionally, according to our observation,

this influences the performance as well. To be specific, LUBM needs computation time

for reasoning the ontology by satisfying constraints and thus its performance (with re-

spect to instance generation time) is lower than GAIA.

November 2014 Page 16 / 17

RAYNAUD,T; HAQUE, R; AMIR, S; HACID, M.-S. GAIA Generic RDF Instance Generator

7 Conclusion

This document presented GAIA, a generic and highly efficient RDF-triple generator

for large ontologies. A high-level architecture of the generator was described in this

report. The implementation of the generator was detailed. The generator was evaluated

by conducting several experiments. We reported the results of experiments.

During our experiment, we found that for some ontologies such as univ-bench, GAIA

produced incorrect results if the number of instances per concept was specified more

than 40000. Our future work is to improve the generator to deal with such cases

efficiently.

November 2014 Page 17 / 17

C E D A R

Technical Report Number 14
GAIA

An OWL-based Generic RDF Instance Generator
Tanguy Raynaud, Rafiqul Haque, Samir Amir, Mohand-Saı̈d Hacid

November 2014

	Introduction
	Motivation
	Solution Architecture & Life cycle
	Development of the Generator
	The Extractor
	The Instance Generator
	The Initial Version
	The Final Version

	Demonstration
	Evaluation
	Experiment Setting
	Results and Discussion

	Conclusion

