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Abstract

CedTMart [3] is a framework for processing RDF (Resource Description Frame-

work) data and complex multi-join SPARQL queries. It comprises three distinct

phases: preprocessing, distribution, and query processing. In [4], we reported

the detail of the first two phases. In this report, we discuss the query processing

phase. We provide a description of various techniques and methods which we im-

plemented in this triplestore to ensures high-performance in terms of processing

queries.
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1 Introduction

In this technical report, we describe the query processing phase of the CedTMart triple-

store [4]. It provides a detailed description of various query processing techniques that

are developed in this research.

This report is organized as follows. Section 2 provides a brief description of CedT-

Mart. A description of SPARQL is provided in Section 3. Section 4 describes the

query processor. The experiment results are provided in Section 5. Section 6 draws a

conclusion and outlines future work.

2 CedTmart - In a Nutshell

CedTMart is a triplestore for storing and querying large-scale datasets distributed in

a cluster of nodes. The goal of this triplestore is to guarantee scalability and high-

performance.

It comprises three phases: pre-processing, distribution, and query processing. Dif-

ferent tasks are performed in these phases. Data are cleaned, converted partitioned,

and compressed in the pre-processing phase. In the distribution phase, the triplestore

performs a comparison between two subsets of data. Also, in this phase, data are par-

titioned into blocks and distributed to the nodes in a cluster. Queries are processed in

the final phase. Figure 1 shows the architecture of CedTMart comprising these phases.

Figure 1: The Architecture of CedTMart (Source [4] )

A detailed description of pre-processing and distribution phases are provided in [4].
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We describe the query processing phase in this report.

3 Preliminary

Several RDF query languages are available such as, DQL [13], N3QL [7], Versa [10],

RDFQ [6], RDQL [9], and SPARQL. Among these, SPARQL is the most widely used

language recommended by the World Wide Web Consortium (W3C). 1 Since CedT-

Mart process SPARQL query, we provide a brief description of SPARQL in this sec-

tion.

3.1 SPARQL

SPARQL [cite] stands for SPARQL Protocol and RDF Query Language. It is a widely

used language for expressing queries. A SPARQL query expression contains clauses

(e.g., SELECT, WHERE, FROM etc..) and triple patterns. It may contain OPTIONAL

pattern and modifiers (e.g., GROUP BY). A triple pattern is essentially a triple which

consists of subject, predicate, and object.

SPARQL offers four different types of query forms, SELECT, CONSTRUCT, ASK, and

DESCRIBE for expressing different types of queries. The SELECT query returns RDF

graphs, CONSTRUCT returns an RDF graph, ASK returns a Boolean value which de-

notes whether or not a triple pattern matches, and DESCRIBE returns a RDF graph that

describes a resource [cite].

A SPAQRL query can be represented as a SPARQL graph (this is why we use the

terms SPARQL query and SPARQL graph interchangeably in this report). The triple

patterns contained in a query compose SPARQL graph. The subjects and objects rep-

resent the nodes and the labelled edges are predicates. Processing a SPARQL query

is essentially a process of matching a SPARQL graph against RDF graphs. Figure 2

shows an example of a SPARQL graph. Note that, a SPARQL graph may contain a

Figure 2: An Example of SPARQL Query

blank node which is a node without any URI (Uniform Resource Indicator) or literal.

Blank nodes are also called anonymous nodes.

1http://www.w3.org/
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4 Query Processing with CedTMart

The CedTMart query processor comprises a query analyser, a query planner, and a

query executor. We describe these components in this section. It is worth noting that

in the previous version of our triplestore the query analyzer was integrated in the query

planner. We decoupled it from the planner to enable the system to carry out analysis

rigorously.

4.1 Query Analyser

A query must be analysed carefully to devise an efficient query plan. We developed the

query analyzer to perform analysis efficiently. It carries out two types analysis: statis-

tical analysis and analysis of the characteristics of queries. The former concerns with

statistical information of queries such as, number of variables in a triple pattern. The

latter concerns with the nature of queries such as, form of queries, which influences

significantly the planning of query execution. The analysis results in a set of meta-data

stored in a file.

Consider the example of SPARQL query shown below is submitted to CedTMart.

SELECT ?x WHERE {

?x hasFriend ?y.

?x hasEmployer ?z.

?y hasEmployer ?z.

?x likes ?t.

?y likes ?t.

?t hasAuthor Martin.

Promod hasFriend Martin

}

The triplestore parses the query and then performs analysis. During statistical analy-

sis, the analyser counts number of variables (prefixed with ?. In this report, we call

this type of variable result variables) associating with the result clause SELECT. For

instance, in the above example, the analyzer finds one result variable that is, ?x. Then

the analyser count the number of triple patterns inside the graph pattern (inside the

WHERE clause). Also, it counts the number of variables each triple pattern is contain-

ing. For instance, the query in the above example has seven triple patterns. Each of

the first five triple patterns contains two variables. The sixth pattern <“?t hasAuthor

Martin"> contains only one variable and the last one has no variable.

Considering the analysis of the nature of queries, the key purpose is to determine the

level of complexity. We use qualitative metrics, low, medium, high, X-high (denotes

eXtremely high) to measure the complexity. During this analysis, the analyser inves-

tigates the query forms first. According to our observation, the simplest form of a

SPARQL query is ASK. The other forms include SELECT, CONSTRUCT, and DESCRIBE,

are relatively more complex than this. However, an ASK query may promote complex-

ity depending on the number of triple patterns it should match. The complexity of a
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SPARQL query can be high if it contains more than one query form. For instance, if

a SPARQL expression contains SELECT and DESCRIBE query forms, it will be more

complex than a query with SELECT form only.

Then, the query analyser analyses the result variable. However, note that, it can be a ‘*’

instead of a result variable such as ?x. The complexity of star queries can be lower than

the queries with results variable(s) since in this type of queries, it is easier to find the

target RDF graphs from a distributed dataset. Additionally, typically, the star queries

contains dataset definition clause that is, FROM clause, which essentially simplifies

the queries significantly. Conversely, in order to retrieve a RDF graph corresponding

to a result variable, the query processing engine may need to scan all the lines/rows of

the complete dataset.

The queries with dataset definition are simple. The dataset definition enables targeting

specific data location, which is critical to reduce query processing time in a distributed

environment.

Furthermore, the analyser analyses the number of triple patterns inside the graph pat-

tern of queries. The analyzer counts the number during statistical analysis and uses

it to calculate the number of JOINs in queries. The number of JOINS has a positive

correlation with the complexity of queries. To sum up, the level of complexity of a

query relies on the following attributes:

• number of query form contained in the query,

• type of query form,

• the type of result variable (star or regular variable),

• number of result variable contained in the query

• availability of data set definition (FROM Clause)

• number of triple patterns,

• availability of query pattern,

• availability of modifier

• number of modifier

4.2 Query Planner

The key purpose of the query planner is to devise an efficient execution plan which

guides the query execution. It uses the outcomes produced by the analyser. The planner

carries out three functions: SPARQL Graph Partitioning, SPARQL Sub-graph Ranking,

Cost Calculation, and Generating Execution Plan.

4.2.1 SPARQL Graph Partitioning

Query partitioning is a process of decomposing a SPARQL graph into sub-graphs. The

planner partitions a SPARQL graph by number of variables each triple pattern contains.
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Figure 3: An Example of Query Partitioning.

For instance, the example provided in Section 4.1 can be partitioned as shown in Figure

3.

This figure depicts that the query is partitioned into three sub-graphs. The first partition

is a subgraph composed of a triple pattern with zero variable. The second subgraph

contains a triple pattern with one variable and the final partition is a subgraph com-

posed of triple patterns with two variables.

4.2.2 SPARQL Sub-graph Ranking

Sub-graph ranking is a process of ordering sub-graphs that were generated in the pre-

vious step. The sub-graph ranking process is straightforward. The planner defines

the order of sub-graphs by the number of variables. For instance, a sub-graph with 0

variable holds the first position. Eventually, it produces a list of sub-graphs.

In Figure 4, a SPARQL graph GS is defined as a set of ordered sub-graphs (SG1, SG2..

SGn). The table presents ranking of sub-graphs.

4.2.3 Cost Calculation

Cost calculation is a process of computing the cost of executing queries. In this re-

search, we developed a cost model, which is a sum of three different cost patterns with
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Figure 4: Query Sub-graph ranking

their co-efficient. We define a cost function to estimate the cost of executing queries.

CQ =
∑

(αCT + βCP + γCV ) (4.2.1)

Where:

• CQ denotes the total execution cost,

• CT, CP, and CV denote Cost of Triple Patterns, Cost of Predicate, and Cost of

variable respectively, and

• α, β, and γ denote these co-efficients of the cost patterns.

The values of these coefficients (shown in equation 4.2.1) are user defined and

depend on the following parameters:

– Size of the predicates refers to the size of the predicate files after carry-

ing out the predicate partitioning on a dataset. If the size of a predicate is

bigger (let’s say 80% of the dataset) than others, the value of β should be

large. It is worth noting that in the preprocessing phase, our triplestore cal-

culates the size of each predicates produced by carrying out the predicate

partitioning operation.

– Cost of triple patterns, consider a query with two triple patterns and the

costs of these triple patterns, let’s say 1 and 5 respectively. In such cases,

the value of α should be large.

The cost patterns are briefly explained in the following:

• Cost of Triple Pattern (CT): The number of variable(s) represents the weight

of triples patterns. The weight determines the execution cost of triple patterns.

For instance, the weight of a triple pattern <?x hasFriend ?y> is ‘2’ because

it contains variables. While processing, this triple pattern will consumes more

resources than a triple pattern <?t hasAuthor Martin> whose weight is ‘1’.

The weight of a triple pattern can be ‘0’. For instance, <Promod hasFriend

Martin> do not contain any variable. Such triple patterns will consume lesser

resources than other triple patterns in a query.
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• Cost of Predicate (CP): It is determined by the weight of predicates. The weight

of predicates is determined by their size (after partitioning datasets in the pre-

processing phase.)and the cost of subject and/or object corresponding to a pred-

icate.

The size of a predicate depends on the number of Subject-Object (S-O) pairs that

can range from some KBs to GBs. Querying a smaller size predicate is always

faster than a larger one. The cost of subject and/or object is determined the

number of entries (subjects or objects) corresponding to the (subject) variables

or (object) variable of a triple pattern. Consider a triple pattern <?t hasAuthor

Martin>; first the size of the predicate hasAuthor is considered and then the

number of entries corresponding to the row Martin in the O-S matrix (the matrix

is created in the preprocessing phase by the BitMat [1] compressor. See [4]) for

more detail.) Note that, in an extreme case, a row can contain millions of entries.

Thus, the partial execution time of triple patterns may vary from milliseconds to

minutes. In a word, the parameter number of entries has a positive correlation

with the time to fetch them.

• Cost of Variable (CV): The variables in SPARQL graphs are used in JOIN oper-

ations which are in fact the most complicated operations both in relational and

graph database. The complexity of JOIN queries is determined by the number

of times a variable appears in different triple patterns. For example, a vari-

able ?x can be contained in a triple pattern with one variable and two other

triple patterns with two variables. This is the key to measure the cost of vari-

able, which according to our view critical for estimating the cost of executing

SPARQL queries. Additionally, we found that the cost of variable relies heavily

on cost of predicate. Taking these aspects into consideration, we developed the

following cost function,

CV =
∑

(K ∗

n∑

i=1

(CP (ti))) (4.2.2)

Where:

– K denotes number of times a variable occurs in the number of triple pat-

terns

Note the, the value of CP is always integer.

4.2.4 Generating Execution Plan

The execution plan is a specification for executing queries. The planner generates this

specification based on the estimated costs calculated in the previous step. An execution

plan specifies the order executing parts of queries (subgraphs) and how to join results

produced by the subgraphs.
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Unlike other triplestores such as, HadoopRDF [12] and RDFPig [5], CedTMart gener-

ates only one plan. The key notion is to reduce the time required to generate more than

one plans and then compare them using techniques such as round-robin scheduling to

find the best plan.

4.3 Query Executor

CedTMart provides two distinct modes of executing queries: the centralized execution

and distributed execution. The former enables to run queries on a single host whereas

in the distribution execution mode, the queries are sent to a cluster of nodes depend-

ing on the locations of corresponding data items. The query executor carries out the

following steps to process a query,

• STEP 1: From the query launcher, a query is sent to the parser which parses the

query into several parts: the query form (e.g.SELECT), the variables, the triple

patterns, data definition clause (FROM) and other elements such as, modifiers

FILTER and PREFIX).

• STEP 2: The executor distributes the parts(subgrapgs) of a given query to data

node(s) depending on the data location. Note that, in case of centralized execu-

tion mode, there is no notion of data node.

• STEP 3: If the rdf:type of subgraph is literal, they converted to numerics

by assigning an ID. For instance, a query <?x hasAuthor Martin> is trans-

formed into <?x isStudent 6319> where, 6319 is the ID of Martin. The ID

is retrieved from the (key,value) indexing store that is hosted on the same node.

Then, the data is fetched from the corresponding data block. In the next step, the

fetched data is converted back to the literal by querying the key-value indexing

store. Finally, the results of the subgraph are returned (Boolean, if no variable)

• STEP 4: In the final step, the executor combines results of subgraphs based on

variables and returns a result-set or NULL

4.4 Query Optimization

We have developed various optimization techniques for different phases of CedTMart

to ensure high-performance in processing complex queries. In preprocessing phase, we

compress data using the Bitmat technique. In addition, we used D-Gap [2] compres-

sion technique which enables querying compressed dataset. This prevents data read

from the secondary storage and enables loading dataset onto main memory, which in-

creases query processing speed by reducing. We developed a comparison technique

for distributing data intelligently within a cluster of nodes. This essentially reduces

the communication costs between the nodes in a cluster. Additionally, the cost mod-

els which we developed to generate a highly-efficient query plan, enables processing

complex queries faster.
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Locating exact data items for instance, a line in a huge file is critical to performance

in terms of processing queries. In order to locate data efficiently we developed an

indexing technique relying on Binary Tree and Pointer List. In the preprocessing phase,

the compressed sets of data (predicate files) are sliced into variable sized small chunks

and the metadata is generated. The metadata contains different information such as,

size of data blocks and offset (tail) of data blocks. These chunks are then distributed

to data nodes along with their metadata. A listener program on the data node side

loads the meta-data into a temporary in-memory data structure: either a binary tree or

a pointer list. Once a subgraph arrives, the program can locate the correct data block(s)

and fetch the on-demand data faster.

5 Evaluation

We conducted a small-scale experiment with our query processer. It is worth noting

that in this experiment we used the Lehigh University Benchmark(LUBM) [11] dataset

that was preprocessed using our triplestore (A detailed information of preprocessing

result is available in [4]). We experimented the CedTMart triplestore on distributed

execution mode. The cluster consists of three virtual machines (VMs) which are in-

stantiated from the machine with the following specification.

• Processor: I7 960 quad core processor with Hyper-Threading Technology,

• Memory: 16GB main memory

• HDD: 1TB Seagate 7200.12

CedTMart offers HDFS[8] and CEDAR distributor for distributing datasets. For this

experiment, we used CEDAR distributor for this experiment. Note that, it relies on

local file system such as, BTRFS. 2

We conducted three experiments with a small dataset to test the performance of CedT-

Mart. The experiments are described briefly in the following:

• Experiment 1: This experiment relies on the query plan which uses cost of triple

pattern cost model.

• Experiment 2: This experiment relies on the query plan which combines all three

cost models. However, it uses non-blocking data storing method. In this method,

the subsets of the datasets (predicates files) are stored without partitioning them

any further.

• Experiment 3: Like the second experiment, the final experiment relies on the

query plan that combines all of the three cost models. However, it uses indexed

data blocking optimization.

2BTRFS:https://btrfs.wiki.kernel.org/index.php/Main_Page
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Since we conducted experiments with the LUBM dataset, we used queries proposed

by the benchmark. Due to the restricted main memory size, we carried out experiments

on 2GB dataset. The outcomes of the experiments are presented in Table 1.

Table 1: Query Execution Results

Executor Elapsed Time (in millisecond)

CT 2023

(CT + CP + CV) 1792

(CT + CP + CV) & Indexed Data Block 503

The table shows that the combination of our cost models and indexed data block tech-

nique improved performance significantly. However, more experiments with massive-

scale datasets is necessary to validate the performance of CedTMart. Note than, we

have not used HDFS in our experiments, because it promotes latency of random read

due to its internal functionalities.

6 Conclusion & Future Work

In this technical report, we described the query processing phase of CedTMart tripl-

store. We provided a detailed explanation of the query processing techniques which

we have developed in this research. We described the query optimization techniques

which has been developed to improve the performance of CedTMart. We provided

the results of the experiments which we conducted to evaluate the performance of the

triplestore. The outcomes showed that the cost models are not sufficient to optimize

the performance of complex queries in distributed environment. The indexing of data

blocks is a very efficient technique for reducing query processing time.

We should conduct more experiments and perform a comparative analysis with ex-

isting triplestores. Also, we need to refine our techniques through experimenting the

triplestore. Since we integrated HDFS with our triplstore and it guarantees a highly

scalable and fault-tolerant environment, we should develop a MapReduce-based query

executor to investigate the performance of our triplestore in the Hadoop ecosystem.
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