

Design and Implementation of an Efficient Semantic Web Reasoner

Samir Amir and Hassan Aït-Kaci

samir.amir@univ-lyon1.fr hassan.ait-kaci@univ-lyon1.fr

Plan

- Introduction
- Semantic Web reasoning
- Experiments
- CEDAR reasoner building blocks
- Conclusion

how to make the Web Intelligent ?

- Linked Data has become *de facto* standard for distributed information—*it does* to RDF what HTML has done to text: it interconnects knowledge through the Internet

Challenges are Scalability and Distribution

Semantic Web reasoning

- (1) Description Logic based reasoners
- Tableau-based reasoning.
- Rules.

HermiT [Rob Shearer2008] Pellet [Evren Sirin 2007] FaCT++[Tsarkov2006] RacerPro[Volker2005]

(2) Logic programming

- Prolog
- SWORIER [Grosof2003]
- (OLP) Ontological Logic Programming [Sensoy2009]

Large-reasoning is a challenge [Srinivas. 2009] [Dentler2011]

OSF for the Semantic Web

- OSF (Order-sorted feature)[Aït-Kaci97]
 - → Expressivity
 - → Scalability
 - \rightarrow Graph unification-based reasoning.
 - → OSF constraints have a graph structure
 → RDF compatibility
- CEDAR reasoner is built on the top of OSF

Syntax

person (teachesAt => institution, doesResearch => laboratory).

Experiments

CEDAR vs OWL reasoners (TBox reasoning)

Benchmarks:

Ontology	sorts	properties
Amphibian [Maglia et al. 2007]	6135	30 (generated)
Molecule Role [Yamamoto et al. 2004]	9127	7
FMA [Rosse and Mejino 2003]	83 283	77
CPO [Hoehndorf et al. 2012]	136 006	55
MESH [of Medicine 2003]	286 380	32
NCBI [Federhen 2012]	903 617	30 (generated)

Reasoners:

Pellet, HermiT, RacerPro, TrOWL, FaCT++ and CEDAR

Queries:

X:
$$\mathbf{s}$$
 ($\mathbf{f}_1 \Rightarrow \mathbf{s}_1, \dots, \mathbf{f}_n \Rightarrow \mathbf{s}_n$) for $10 \le n \le 100$.

Classification

CEDAR vs OWL reasoners (TBox reasoning)

CEDAR vs OWL reasoners (ABox reasoning)

- LUBM Generator (10 K 5M triples)
- Pellet, HermiT, RacerPro, TrOWL, FaCT++, Jena, SPARQL-DL, CEDAR.

CEDAR vs OWL reasoners (ABox reasoning)

LUBM Generator

- Q1: person (takesCourse =>course)
- Q2: person (worksFor => organization, headOf => department)

CEDAR *vs* **OWL** reasoners (ABox reasoning)

CEDAR *vs* **OWL** reasoners (ABox reasoning)

CEDAR Building Blocks

Conclusion

CEDAR architecture

CEDAR Building Blocks

Classification

Ontology encoding (classification)

- □ Binary Encoding (transitive closure)
- □ Feature Propagation.
- □ Consistency Checking.
- □ Cycle detection.

CEDAR Building Blocks

Conclusion

Binary encoding [Aït-Kaci 89]

Тор	11111111	8
person	01111000	7
teacher	00101000	6
researcher	00011000	5
professor	00001000	4
institution	00000111	3
university	00000010	2
laboratory	0000001	1

professor is-a teacher, teacher is-a person \rightarrow professor is-a person

person → 01111000

teacher and researcher \rightarrow professor (00101000 and 00011000 \rightarrow 00001000)

teacher teachesAt university **>** professor teachesAt university

Classification

Ontology encoding (classification)

- Binary Encoding.
- □ Feature Propagation.
- □ Consistency Checking.
- □ The encoded ontology is saved on the disk
 - → There is no need to recompute the classification.

CEDAR Building Blocks

Conclusion

Query normalization

Query normalization

11111111	8
01111000	7
00101000	6
00011000	5
00001000	4
00000111	3
0000010	2
0000001	1
	01111000 00101000 00011000 00001000 00000111 000000

- Q1 : person (teachesAt => institution, doesResearch => laboratory).
- → person and teacher and researcher (teachesAt => institution and university, doesResearch => laboratory)
- → professor (teachesAt => university, doesResearch => laboratory)

Query normalization

Тор	11111111	8
person	01111000	7
teacher	00101000	6
researcher	00011000	5
professor	00001000	4
institution	00000111	3
university	0000010	2
laboratory	0000001	1

- Q1 : person (teachesAt => institution, doesResearch => laboratory).
- → person and teacher and researcher (teachesAt => institution and university, doesResearch => laboratory)
- → professor (teachesAt => university, doesResearch => laboratory)
- Q2 : person (teachesAt => laboratory).
- →person and teacher (teachesAt => laboratory and university)
- → Teacher (teachesAt => « Bottom ») → Q2 is not consistent

CEDAR Building Blocks

Conclusion

Query rewriting

Example RDF : OSF mapping

professor (teachesAt => university , doesResearch => laboratory)

SPARQL query generation

Q1 without normalization

person (teachesAt => institution, doesResearch => laboratory)

Select x where {

- ?x rdf:type person.
- ?x teachesAt ?y.
- ?y rdf:type institution.
- ?x doesResearch ?z.

```
?z rdf:type laboratory
```

}

Q1 with normalization

professor (teachesAt => university, doesResearch => laboratory)

Select ?x where {

?x rdf:type professor

CEDAR reasoner Building Blocks

❑ Binary encoding

→ Efficient Boolean query answering.

Ontology is encoded, saved on the disk (no need to materialize)

- → Materialization should be carried out each time the ABox changes.
- → Materialization increases the number of facts.

❑ Normalization uses the TBox for query simplification and consistency check

- → Simplify the query and reduce the search space.
- → Detect the inconsistency.

☐ Type indexing

→A has quick access to RDF triples.

□ Support more complex Queries (disjunction, filtering, etc)

