
✬

✫

✩

✪

C E D A R

Technical Report Number 9

The Cedar.Gdl Java Library for the

Generalized Distributive Law

Design and Implementation

Kevin Sancho and Hassan Aı̈t-Kaci

July 2014

Publication Note

This report is based on the work done by the first author during his internship in the

CEDAR Project toward the obtention of his MSc degree at the Université Claude

Bernard Lyon 1, on a topic proposed by Prof. Hassan Aı̈t-Kaci [32].

Contact information:

LIRIS - UFR d’Informatique

Université Claude Bernard Lyon 1

43, boulevard du 11 Novembre 1918

69622 Villeurbanne cedex

France

Phone: +33 (0)4 27 46 57 08

Email: kevin.steven.sancho@gmail.com

hassan.ait-kaci@univ-lyon1.fr

CEDAR Project’s Web Site: cedar.liris.cnrs.fr

Copyright c© 2014 by the CEDAR Project.

This work was carried out as part of the CEDAR Project (Constraint Event-Driven Automated

Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1 (UCBL). It may not be

copied nor reproduced in whole or in part for any commercial purpose. Permission to copy

in whole or in part without payment of fee is granted for non-profit educational and research

purposes provided that all such whole or partial copies include the following: a notice that

such copying is by permission of the UCBL, with an acknowledgement of the authors and in-

dividual contributors to the work; and all applicable portions of the copyright notice. Copying,

reproducing, or republishing for any other purpose shall require a license with payment of a

fee to the UCBL. All rights reserved.

http://cedar.liris.cnrs.fr

CEDAR Technical Report Number 9

The Cedar.Gdl Java Library for the

Generalized Distributive Law

Design and Implementation

Kevin Sancho and Hassan Aı̈t-Kaci

kevin.steven.sancho@gmail.com, hassan.ait-kaci@univ-lyon1.fr

July 2014

Abstract

The Generalized Distributive Law (GDL) formulation and algorithm were pro-

posed in 2000 by Srinivas Aji and Robert McEliece. The GDL is a parametric

expression-evaluation optimization method that may be instantiated on any spe-

cific commutative semiring structure. It can be used to express various algorithms

that have been independently designed in domains such as Information Theory,

Digital Communications, Statistics, Artificial Intelligence, etc., . . . In this report,

we describe the design and implementation of an abstract Java class library for

the GDL. This library is a generic API meant to be instantiated with specific com-

putation structures. It provides a runnable specification of the GDL in terms of

abstract operations of a commutative semiring—i.e., a set with an addition (+)
and a multiplication (×), the latter distributing over the former. This allows the

generic efficient evaluation of expressions using a dynamic-programming two-

way message-passing algorithm on an arborescent structure called a Junction

Tree. We used our library to regenerate as running instances two algorithms de-

scribed by Aji and McEliece: the Fast-Hadamard Transform (FHT) algorithm

on any finite Abelian group, and Judea Pearl’s Belief-Propagation Bayesian rea-

soner. We also used it to generate a new instance for Constraint Satisfaction.

Keywords: Abstract Java Library, Distributive Law, Junction Tree, Belief Propaga-

tion, Contraint Satisfaction

Table of Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Organization of contents . 2

2 Bayesian Networks 3

2.1 Generalities . 3

2.2 The GDL in the literature . 8

3 The Generalized Distributive Law Algorithm 9

3.1 The GDL . 9

3.2 Junction trees . 11

3.3 The message-passing algorithm . 16

4 The Cedar.Gdl Library Implementation 19

4.1 The abstract core . 19

4.2 Classes implementing the GDL . 22

5 Original Contribution 23

5.1 Constraint satisfaction with the GDL . 23

5.2 A modification of the GDL algorithm . 25

5.3 Modeling Allen’s interval algebra with the GDL 28

6 Implemented Instances of the Cedar.Gdl Library 29

6.1 The Fast-Hadamard Transform . 30

6.2 Judea Pearl’s belief propagation . 30

6.3 Constraint processing . 31

6.3.1 Constraint-satisfaction problems 32

6.3.2 Constraint solving . 33

7 Conclusion 33

7.1 Recapitulation . 33

7.2 Perspectives . 33

A Correctness of the construction of Section 5.1 34

B Correctness of the GDL Modification of Section 5.2 34

B.1 First method . 34

B.2 Second method . 35

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

1 Introduction

1.1 Background

The basic algebraic distributive law for a multiplicative operation × over an additive

operation + states that (a×b)+(a×c) = a×(b+c), for all a, b, and c. While the left-

hand side contains two multiplications and one addition, the right-hand side contains

only one addition and one multiplication. If one minds the number of operations, the

difference may appear small in this case. But in many cases, the number of calculations

saved can be important. Consider for example the expression:

α(x, z) =
∑

y,w∈A

f(x, y, z)× g(x,w). (1)

After transformation by distributivity, Equation (1) becomes:

α(x, z) =
∑

y∈A

f(x, y, z)×
∑

w∈A

g(x,w) (2)

Equation (1) requires |A|2 operations, while Equation (2) only requires 2× |A| opera-

tions.

The Generalized Distributive Law (GDL) [2] is a technique that uses distributivity to

minimize the number of operations in expressions of a commutative semiring using a

message-passing algorithm. This generalization leads to a large family of fast algo-

rithms, such as Viterbi’s algorithm [34], the Fast-Fourier Transform (FFT),1 and many

others. The interest of this algorithm comes from the fact that it applies to situations

where the notion of addition and multiplication are abstracted. All computation is

expressed in the appropriate framework of a commutative semiring.

DEFINITION 1 A commutative semiring is a set K equipped with two binary opera-

tions (+) and (×) such that:

• 〈K,+〉 is a commutative monoid; i.e.:

1. there is an identity element 0 such that ∀k ∈ K, k + 0 = k;

2. + is associative;

3. + is commutative;

• 〈K,×〉 is a commutative monoid; i.e.:

1. there is an identity element 1 such that ∀k ∈ K, k × 1 = k;

2. × is associative;

3. × is commutative;

• × distributes over +; i.e.: ∀a, b, c ∈ K, (a× b) + (a× c) = a× (b+ c).

1
https://en.wikipedia.org/wiki/Fast Fourier transform

July 2014 Page 1 / 38

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Figure 1 shows examples of commutative semirings whereR denotes any commutative

ring,R[x] andR[x, y, . . .] denote respectively univariate and multivariate polynomials

with coefficients in R, S is an arbitrary set, and L is any distributive lattice.

K + 0 × 1

(1) R + 0 × 1

(2) R[x] + 0 × 1

(3) R[x, y, . . .] + 0 × 1

(4) [0,+∞) + 0 × 1

(5) (0,+∞] min +∞ × 1

(6) [0,+∞) max 0 × 1

K + 0 × 1

(7) (−∞,+∞] min +∞ + 0

(8) [−∞,+∞) max −∞ + 0

(9) {false, true} or false and true

(10) 2
S ∪ ∅ ∩ S

(11) L ∧ ⊥ ∨ ⊤

(12) L ∨ ⊤ ∧ ⊥

Figure 1: Examples of commutative semirings

1.2 Motivation

Since the essence of the Generalized Distributive Law is that it abstracts the algebraic

structure of a commutative semiring, it makes sense to propose an abstract library

architecture for it. This abstraction is the key for implementing several algorithms

related to different domain in a single library. This can then provide a tool that could be

used for diverse applications like inference and decision making in Bayesian Networks

(BNs). Having one generic tool is not only a boon for creating new algorithms as

GDL instances, but this also gives the opportunity to focus on optimizing the generic

code once and for all independently of the specific nature of the semiring operations

involved.

The challenge in designing and implementing a Java library for the GDL thus resides

in enabling this genericity. It should be capable of handling a vast variety of semiring

instances of all sorts. The solution is the creation of abstract classes that specify in

an abstract manner the GDL algorithm. Using the library is through the creation of an

instance for a specific commutative semiring. The work we report here describes a

Java implementation and use of such an abstract library.

1.3 Organization of contents

The rest of this document is organized as follows. Section 2 is a review of Bayesian

networks, presenting the context of the GDL and the state of the art related to this

technology. Section 3 gives definitions necessary to understand the GDL, and what is

required for this algorithm to be cast into a generic software architecture. Section 4

presents the architecture, and discusses the implementation, of the library. Section 5 is

our original contribution as far as: using the GDL the context of constraint processing

(Section 5.1); introducing modifications to the GDL in the representation and compu-

tation of a junction tree (Section 5.2); and, explaining how it is possible to use it for

July 2014 Page 2 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

qualitative temporal reasoning (Section 5.3). In Section 6, we discuss our implemented

instances of the GDL: The Fast-Hadamard Transform (Section 6.1) and Judea Pearl’s

Belief Propagation (Section 6.2). In Section 7, we conclude: Section 7.1 recapitulates

this work; and, Section 7.2 discusses potential perspectives opened by our design and

implementation. We added an appendix containing the proof of correctness of the parts

of our design that depart from the Aji-McEliece design.

2 Bayesian Networks

In [1] and [2], most of the GDL instances studied are algorithms related to decision

under uncertainty such as with Bayesian networks. Thus, let us first explain what a

Bayesian network is, and review some related tools used for learning, inference, and

decision making, under uncertainty.

2.1 Generalities

A Bayesian network (BN) is a graph-based model that enables making decisions under

uncertainty [23]. What makes BN models even more interesting is that they may be

learned from data (parameters and structure). They are among the most successful

technology for data mining because they allow adapting decision making dynamically

to changing environments. Some particular forms of dynamic BN models, such as

Hidden Markov Models [30], are very successful in pattern recognition of sequential

data such as time series forecasting.

Recall that the conditional probability of a random event A given that another random

event B has occurred is defined as:

p(A | B)
def
=

p(A ∩B)

p(B)
.

From this definition, Bayes’s Law follows, which states that:2

p(A,B) = (A | B)× p(B) = p(B |A)× p(A).

This generalizes to n events (n ≥ 2) as follows:

p(Aπ1 , . . . , Aπn) = p(Aπ1 | Aπ2 , . . . , Aπn)

× p(Aπ2 | Aπ3 , . . . , Aπn)
...

× p(Aπn)

for any permutation {π1, . . . , πn} of the set {1, . . . , n}.

2By convention, P (A,B)
def
= p(A ∩B).

July 2014 Page 3 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Recall also that two events A and B are deemed independent (noted A ⊥ B) whenever

the probability of them simultanously occurring is equal to the product of probabilities

of each occurring; that is:

A ⊥ B iff p(A,B) = p(A)× p(B).

In other words:

A ⊥ B iff p(A |B) = p(A) iff p(B | A) = p(B).

In essence, a Bayesian network is a graph-theoretic encoding of causal conditional

independence [26, 10, 16]. Figure 2 shows an example of a Bayesian net.3 This graph

Cloudy

Sprinkler Rain

WetGrass

Figure 2: Example of Bayesian network

tells us that: (1) R and S are independent given C, and (2) W and C are independent

given R and S. Figure 3 shows an example of causal conditional probability tables for

the Bayesian network of Figure 2.

Conditional independence

The most important information leveraged by Bayesian reasoning is conditional inde-

pendence. This is precisely where the “graphical” aspect of Bayesian networks comes

into play as the graph structure of a BN encodes this information implicitly. For ex-

ample, the graph structure shown in Figure 2 tells us that (1) S and R are independent

given C, and (2) W and C are independent given R and S. Indeed, Bayes’s rule gives

the joint probability:

p(C,S,R,W) = p(C)× p(S|C)× p(R|C,S)× p(W |R,C, S)

which is simplified by independence into:

p(C,S,R,W) = p(C)× p(S|C)× p(R|C)× p(W |R,S).

3This “Wet Grass” example has become the standard all-replicated example in Bayesan tehcnology

literature, pretty much as appending two linear lists for Functional Programming or Logic Programming.

This is borrowed from [23].

July 2014 Page 4 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

p(C) p(C)

0.5 0.5

X p(S|X) p(S|X)

C 0.1 0.9

C 0.5 0.5

Cloudy

X p(R|X) p(R|X)

C 0.8 0.2

C 0.2 0.8

Sprinkler Rain

WetGrass

X Y p(W |X,Y) p(W |X,Y)

S R 0.99 0.01

S R 0.9 0.1

S R 0.9 0.1

S R 0.0 1.0

Figure 3: Example of Bayesian net’s causal conditional probabilities

The probability “marginalization” is thus given by:

p(S|W) =
p(S,W)

p(W)
=

∑
c,r p(C = c, S,R = r,W)

∑
c,s,r p(C = c, S = s,R = r,W)

p(S|W) =
0.2781

0.6471
= 0.4298

p(R|W) =
p(R,W)

p(W)
=

∑
c,s p(C = c, S = s,R,W)

∑
c,s,r p(C = c, S = s,R = r,W)

p(R|W) =
0.4581

0.6471
= 0.7079.

Markov Blanket

As can be seen from our “wet grass” example, intuition may be easily fooled trying
to determine what is independent of what given what—even in such a trivial causal
graph! Fortunately, the wealth of formal research on the subject has made it possible
to reduce this analysis to a very simple criterion. Indeed, conditional independence
can be easily determined from the connectivity of a causal graph by computing each
node’s so-called Markov blanket. The Markov blanket of a node is defined as the set
of nodes comprising the node’s parents, its children, and its children’s other parents.4

That is, given a node X, its Markov blanket is defined as the set:

∂X
def
= PARENTS(X) ∪ CHILDREN(X) ∪ PARENTS(CHILDREN(X)) \ {X}.

4
http://en.wikipedia.org/wiki/Markov blanket

July 2014 Page 5 / 38

http://en.wikipedia.org/wiki/Markov_blanket

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

A B C

D E F G

H I J K L

M N O

P Q

Figure 4: Example of a Markov blanket

For example, referring to the causal graph of the example in Figure 4, we obtain:

PARENTS(I) = {E,F},

CHILDREN(I) = {M ,N},

and:

PARENTS(CHILDREN(I)) \ {I} = {H ,K ,L}.

Hence, the Markov blanket of the node I is:

∂I = {E,F ,H ,K ,L,M ,N}.

The Markov blanket splits each node X in the setN of nodes of a Bayesian network’s

causal graph partition N into three mutually exclusive components; namely, N =
∂X ⊎ {X} ⊎ ∂ c

X . The key result is that any node is independent of nodes outside

its Markov blanket: X ⊥ ∂ c
X | ∂X [26, 16]. Using Bayes’s rule, this allows the

following simplification by conditional independence: p(X | ∂X , ∂ c
X) = p(X | ∂X).

Belief revision

One of the most powerful capabilities offered by a Bayesian network is that it can

adapt its knowledge according to accumulated evidence. This is known as “explaining

away” since it is a form if plausible reasoning such that whenever several events are

plausible causes of another one, say X, posterior evidence changes the likelihood of

explanations for X. To see that with our example, let us suppose that it is observed that

July 2014 Page 6 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

(W) the grass is wet and that (R) it is raining. Then, this indicates that the posterior

likelihood that (S) the sprinkler is on goes down as follows:

p(S |W,R) =
p(S,W,R)

p(W,R)
=

∑
c p(C = c, S,W,R)∑

c,s p(C = c, S = s,W,R)
= 0.1945.

Causal learning

Yet another benefit of Bayesian networks is that they can be learned from data, thus

circumventing the “expert belief assessment” problem [6]. Indeed, recent research in

Data Mining has made great progress for learning Bayesian network (parameters and

structure) from data [24].5,6

S1 S2 · · · Sn

Y1 Y2 · · · Yn

Examples Mobile robots Speech recognition Biological sequencing

Sn location phonemes protein structure

Yn sensor input acoustic signal amino acids

Figure 5: Example of an HMM’s hidden states and their observations

Dynamic Bayesian Networks

Bayesian networks also appear in particular specific instances (e.g., Hidden Markov

Models, Linear Dynamic Systems) that are very successful for pattern recognition of

sequential data (e.g., speech recognition [35], time series data [19]). Figure 5 shows

an example of a Hidden Markov Model (HMM), a particular instance of a dynamic

Bayesian network where the Si’s are time-indexed “hidden” (i.e., unobservable) states

of a Markov process, and each Yi is an observable random function of the correspond-

ing hidden state Si.

In addition, HMMs can be “trained” on data in the manner of neural networks to en-

able forecasting. They have been used extensively and applied with great success in

5
http://www.cs.cmu.edu/˜awm/10701/slides/Param Struct Learning05v1.pdf

6
http://www.autonlab.org/tutorials/

July 2014 Page 7 / 38

http://www.cs.cmu.edu/~awm/10701/slides/Param_Struct_Learning05v1.pdf
http://www.autonlab.org/tutorials/

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

diverse fields such as signal decoding [20], speech recognition [35], geological explo-

ration [28], stock trading [25], and genome analysis.7

During the past decade, this an important set of algorithms have been contributed; e.g.,

Judea’s Pearl Belief Propagation [27], the Expectation-Maximization algorithm [21],

Viterbi’s algorithm [34] and many others. All these can be cast as specific instances of

the GDL algorithm.

The Expectation-Maximization algorithm was introduced in 1977 in a paper by Demp-

ster, Laird, and Rubin [11]. This algorithm is used to find the maximum-likelihood

parameters of a statistical model when the equation of the model itself cannot be

solved directly. This algorithm is often used in computational biology applications

since it allows drawing conclusions with incomplete sets of data. The Expectation-

Maximization algorithm is indeed quite useful in domains where there is no guarantee

that the data collection will produce complete sets of data. The algorithm is quite com-

plex but it is possible to expose a commutative semiring underpinning the operations

performed by the algorithm. Therefore, it becomes possible to use the GDL to solve

this kind of problem.

Viterbi’s algorithm is a Dynamic-Programming algorithm for finding the most likely

sequence of hidden states in a Hidden Markov Model. It is broadly used for decod-

ing convolutional codes—such as, for example, using Viterbi’s Algorithm in order to

decode bit-stream [34]. These algorithms are well-known in probabilistic deduction.

They are widely used in causal learning [24], Sequential Data Analyisis [30, 35, 19,

25], belief revision [16, 27, 26], probabilistic-logic programming [9], and many more

application areas [28], etc., . . .

Having a single abstract library capable of implementing all these algorithms offers a

truly versatile parametric application generator to reproduce quickly specific efficient

computation methods over commutative semirings. It can also provide an effective

experimental toolset for a large set of AI applications, including where reasoning under

uncertainty must be handled.

2.2 The GDL in the literature

Several papers [18, 12] have been published that use, or refer to, the GDL algorithm.

In [18], the GDL is extended to exact solutions. This paper presents an algorithm

called the “Sum-Product Algorithm” that is similar to the GDL. This algorithm is also

a generic message-passing method but uses factor graphs instead of junction trees.8

However, during the message passing algorithm, some operations can become in-

tractable. A solution to handle such cases is provided that allows attaining exact

results. Interestingly, we will show that this algorithm can be expressed as a slight

modification of the GDL as originally proposed by Aji and McEliece. Indeed, we also

propose improvements of the GDL and apply it to new use cases.9

7
http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html

8See Section 3.2.
9See Section 5.

July 2014 Page 8 / 38

http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

In [12], the focus is on the statistical and information-theoretic aspects of Hidden-

Markov Processes (HMPs). It is shown how to generalize HMPs under some condi-

tions. Consequently, new algorithms were proposed for universal decoding of HMPs.

The GDL is relevant to HMPs for two reasons: (1) it is a generic algorithm; (2) it can

be made to model a large class of HMPs.

These small examples demonstrate that references to the GDL can be found in the

literature. However, none reports the use of a generic GDL package to be used and

reused for diverse purposes. In the future, it is thus hoped that, thanks to generic

libraries like the Cedar.Gdl, the GDL could be used more systematically as the basis

of many new instantiations based only on the properties of an underlying commutative

semiring structure.

To recapitulate, the GDL algorithm can be applied to many use cases. But as far as we

know, there exists no implemented generic library for it that is able to deal with many

different structures and problems using the same abstract methods. The design and im-

plementation of the Cedar.Gdl abstract library is an effective means for experiment-

ing with specific commutative semiring algebraic structures corresponding to specific

use cases in order to optimize the evaluation of expressions. Depending on the specific

semiring operations of a given use case, evaluating such expressions corresponds to

carrying out some kind of reasoning such as decision making under uncertainty, pre-

dictive modeling in sequential random processes, etc., . . . Thus, proposing a tool such

as the Cedar.Gdl library opens the way to exploring new use cases with minimal

investment while keeping the number of core operations performed minimal. This in-

vestment amounts to the sheer specifying two concrete operations of a communtative

semiring and the concrete data structures they act upon, all of which instantiate the

abstract API provided by the Cedar.Gdl library.

3 The Generalized Distributive Law Algorithm

This section is an illustrated, step-by-step, explanation of the Generalized Distributive

Law. After a brief definition of the GDL, we list the requirement for using the GDL’s

algorithm and how to attain them. Then, we explain the algorithm itself. In the fol-

lowing subsections, we use the use-case example of the Fast-Hadamard Transform for

illustration purposes.

3.1 The GDL

In essence, the GDL computes “sums of products”; e.g., expressions of the form:

α(x, z) =

i≤k≤m∑

xk∈Sk

i≤l≤n∏

yl∈Tl

φ(x1, . . . , xm, y1, . . . , yn) (3)

where
∏

and
∑

correspond to additive and multiplicative laws of a commutative

semiring.

July 2014 Page 9 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

The GDL uses a finite set {x1, . . . , xn} of variables, where each variable xi takes

values in a finite discrete domain Di, for i ∈ {1, . . . , n}. We define the local indices

as subsets of the set of the first n natural numbers; namely, I
def
= {I1, . . . , Im} such

that Ik ⊆ {1, . . . , n}, for k = 1, . . . ,m.

Given a local index, we define a local domain as follows.

DEFINITION 2 (LOCAL DOMAIN) Let I = {I1, . . . , Ir} be a local index; we define

the local domain:

DI
def
= DI1 × . . . ×DIr

such that the I-indexed r-tuple of variables xI
def
= 〈xI1 , . . . , xIr〉 ∈ DI .

With this, we can now express the GDL algorithm in terms of two sets of abstract

functions. One set is taken as parameters—the so-called local kernels.

DEFINITION 3 (LOCAL KERNEL) A local kernel is a function αi : DIi → K, where

K is a commutative semiring.

Another set of functions are defined in terms of the local kernels defined as given by

Definition 3—the so-called global kernels. Given a local index I = {I1, . . . , Ir}:

DEFINITION 4 (GLOBAL KERNEL) A global kernel is a function β : D1 × . . . ×
Dn → K defined as the product of local kernels:

β(x1, . . . , xn)
def
=

m∏

i=1

αi(xIi
).

Still in the context of a given a local index I = {I1, . . . , Ir}, we define the notion of

marginalization of a global kernel as follows:

DEFINITION 5 (MARGINALIZATION FUNCTION) The Ii-marginalization function is

the sum over complemented partial sets of indices Ii of the global kernel function

values (also called “ (i-th) local objective function”):

βi : DIi
→ K : βi(xIi

)
def
=

∑

xIc
i
∈DIc

i

β(x1, . . . , xi, . . . , xn).

With this setup, the GDL may then be formulated as a variable-elimination algorithm

for computing local objective functions given local kernels on local domains.10

10The expression bucket elimination has been used to denote the basic junction tree technique [9, 10].

This is because it maximizes the number of eliminated variables per “pivot step.”

July 2014 Page 10 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

3.2 Junction trees

The GDL message-passing algorithm can only be performed if the elements of S can

be organised into a junction tree [13]. Therefore, the first step is to obtain such a tree

for the desired instantiation.

DEFINITION 6 (JUNCTION TREE) A tree T is a junction tree if: ∀SiSj ∈ T , Si ∩ Sj

is a subset of every vertex on the path from Si to Sj , and only one path exists between

Si and Sj .

x1

x1, x2 x1, x3

x2 x2, x4

Figure 6: A junction tree

Let us take an example that will lead us to the Fast-Hadamard Transform (FHT). The

FHT is used in many domains as Images Processing [15]. Let x1, x2, x3, y1, y2, y3 be

variables taking value in the binary set {0, 1}, and f(y1, y2, y3) a real-valued function.

With this, we can define the problem displayed in Table 1.

Local Domain Local Kernel

{y1, y2, y3} f(y1, y2, y3)
{x1, y1} (−1)x1y1

{x2, y2} (−1)x2y2

{x3, y3} (−1)x3y3

{x1, x2, x3} 1

Table 1: GDL formulation for the Fast-Hadamard Transform

The first step, toward building a junction tree is the creation of a local domain tree

using the list of local domains and kernels.

DEFINITION 7 (LOCAL DOMAIN TREE) A local domain tree is a tree in which every

local domain is the label of a vertex, and a link exists between two vertices vi and vj
if share at least one variable. Such a link is weighted by the number of variables in

common.

July 2014 Page 11 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

In the Cedar.Gdl Java library, once the n local domains and local kernels are de-

fined, a quick algorithm will put every local domain in a node. Then, it looks for

common variables between them and creates a link if there are any common variables.

To every link is associated a weight equal to the number of identical variables in the

pair of vertices that it connects. For our example, this leads to the graph shown in

Figure 7.

x1, y1

y1, y2, y3 x2, y2 x1, x2, x3

x3, y3

1 1

1

1

1

1

Figure 7: The local domain graph associated to Table 1.

The local-domain graph is used as the basis for building a maximal-weight spanning

tree. Several such algorithms exist; e.g., as Prim’s Algorithm [14]. All have their

strengths and weaknesses. However, we decided to opt for Kruskal’s Elimination Al-

gorithm [17]. This is for essentially three reasons. First, this algorithm fits our internal

data representation. Second, it works well. Finally, it simplifies the implementation of

heuristics, adapted to the context of the GDL.

Indeed, a maximal-weight spanning tree is in general not unique. While a specific

spanning tree behaves well on certain problems, it may also behave so wo well, or even

quite badly, on others. In the context of the GDL, the goal is to minimize the calculation

during the message-passing algorithm. Therefore, the heuristics must be adequate with

this goal. A link on a variable vi which takes values in a set Ai is more interesting to

keep than a link on a variable vj , if |Aj | > |Ai|. With the heuristics described in the

Generalized Distributive Law, Kruskal’s Algorithm performed on Figure 7, leads to

the Maximal-Weight Spanning tree in Figure 8.

x1, y1 y1, y2, y3

x1, x2, x3 x3, y3

x2, y2

Figure 8: A maximal-weight spanning tree associated to Figure 7

July 2014 Page 12 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

At this point, two situations are possible. Either the maximal-weight spanning tree

is already a junction tree, in which case there is nothing further to do. Or it is not

a junction tree, in which case another algorithm must be used to find a junction tree.

To know whether or not a maximal-weight spanning tree is indeed a junction tree, a

simple test may be performed. Before we describe it, let us first define some notations.

The maximal-weight spanning tree contains M vertices, v1, . . . , vM (one per local

domains). Every vertex vi contains a set of variables Si (of cardinality |Si|). Using

this notation we can define:

w∗ =
M∑

i=1

|Si| − n (4)

In words, w∗ is the sum of the cardinality of all the local domains minus the number of

different variables. We also define wmax as the weight of the maximal-weight spanning

tree (i.e., the sum of the weight of all the edges). Once this is done, a simple test checks

whether this is junction tree. If w∗ = wmax, then any maximal-weight spanning tree

is a junction tree, and the message-passing algorithm can be performed. However, if

w∗ > wmax, more work is needed to find a junction tree.

For the Fast-Hadamard Transform corresponding to Figure 8, W ∗ = 3 + 2 + 2 + 2 +
3− 6 = 6. However, wmax = 4 because all the edges of the maximal-weight spanning

tree have a weight equal to 1. Thus, the maximal-weight spanning tree of Figure 8 is

not a junction tree. When this happens, the GDL uses another method to find a junction

tree based on the construction of a moral graph. This is explained next.

DEFINITION 8 (MORAL GRAPH) A moral graph is a graph with n vertices, one for

every variable x1, . . . , xn, with an edge between two vertices if and only if there is a

local domain which contains both of them.

In the Cedar.Gdl Java library, an algorithm similar to the creation of the local do-

main graph is performed. For the FHT example of Table 1, it leads to the tree shown

in Figure 9.

x1

y1 x3

y3

x2

y2

Figure 9: The moral graph of the variables in Table 1

July 2014 Page 13 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Once the moral graph is created it is needed to triangulate it (i.e., make it chordal).

DEFINITION 9 (CHORD) A chord is an edge between two non-consecutive vertices in

a cycle.

DEFINITION 10 (CHORDAL GRAPH) A graph is chordal if and only if every cycle of

length greater than three has a chord.

Therefore, we need to add edges until it satisfies Definition 10. The triangulation of a

moral graph is an NP-Hard problem. Many algorithms are known, but none of them

is optimal in all cases. In [5], the authors discuss an approximation for a 3-way vertex

cut. It is of interest because its purpose is to reduce the sizes of the maximal cliques.

DEFINITION 11 (CLIQUE) A clique consists of a subset of vertices such that every

two vertices in the subset are connected by an edge.

For the GDL algorithm, reducing the size of the maximal clique is of the utmost im-

portance. From this, will depend the size of the domains on which will be performed

the calculations, and thus the number of operations. However, the GDL is applied to

diverse cases such as the FHT, and Judea Pearl’s Belief Propagation. Thus, we use

Tarjan Elimination algorithm because it is more convenient for specifying heuristics

in the computation of the moral graph triangulation (see Algorithm 1). This flexibility

allows to specify our specific triangulation heuristics, with the purpose of reducing the

size of the maximal cliques.

Result: A chordal graph

Input: an undirected graph G = (V,E);
while Not all the nodes are dead do

Pick any living node X ∈ V ;

Connect all the neighbors of V (i.e., create a clique with V and all its

neighbors);

Mark X as dead;

end

Algorithm 1: Tarjan’s elimination algorithm

In this algorithm, the order in which the nodes are picked is important. To deal with

this issue efficiently, we propose the heuristic described in Algorithm 2.

This heuristic makes the (locally) optimal node choice at every stage of the triangu-

lation. However, it can also be expensive. Nevertheless, it significantly reduces the

calculation during the message-passing algorithm. However, sometimes it can be use-

ful to spend less time on the triangulation of the moral graph. In such a case, a less

costly heuristic can be used.

The implemented Tarjan’s Elimination Algorithm with the heuristic defined in Algo-

rithm 2, yields the graph in Figure 10. Once we have a triangulated moral graph, we

July 2014 Page 14 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

while Not all the nodes have been picked do
For every node V, count the number of edges needed for creating a clique

with its neighbors;

Create an ordered list of nodes using these numbers as scores;

if at least one node has a score of 0 then
Pick all the nodes with a score of 0 and perform the Tarjan’s Elimination

algorithm on them;

else
Pick the node with the lowest score and perform the Tarjan’s Elimination

algorithm on it;

end

end

Algorithm 2: Heuristic for node choice

x1

y1 x3

y3

x2

y2

Figure 10: The triangulated moral graph corresponding to Figure 9

create a tree using the cliques of the chordal moral graph as vertex labels. In the Fast-

Hadamard Transform example, the triangulated moral graph can be decomposed into

three cliques: {x1, x2, x3, y3}, {x1, x2, y2, y3} and {y1, y2, y3, x1}. These cliques can

be ordered into the tree described in Figure 11.

Now, every original local domain is a subset of at least one of the created cliques.

Thus, a local domain can be linked to one of them. The result is a graph with the

created vertices from the cliques, as core and the original local domains as leaves (see

Figure 12).

Then, the vertices from the cliques must be associated with one of the local domain

linked to them. In some cases some created vertices cannot be associated with a local

domain. We discuss in detail this case later, but let us suppose for now that such an

association is possible. However, in general, the resulting tree is not unique. There is

no specific algorithm given in [2] nor in [1] for this stage.

July 2014 Page 15 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

x1, x2, x3, y3

x1, x2, y2, y3

x1, y1, y2, y3

Figure 11: A tree for the cliques in the triangulated moral graph of Figure 10

x1, x2, x3 x3, y3

x1, x2, x3, y3

x1, x2, y2, y3 x2, y2

x1, y1, y2, y3

x1, y1 y1, y2, y3

Figure 12: The local domains corresponding to Figure 11

To address this issue, we developed our own algorithm. Its method is similar to a

scheduling association algorithm. The goal is to allow as many created cliques as

possible (ideally all), to get associated with a local domain. When a vertex containing

a local domain is merge into a vertex from a clique, the local domain becomes extended

by the additional variables in the vertex from the clique. The result is a junction tree

with each vertex associated to a local kernel and a local domain (see Figure 13).

This section has addressed issues concerning the existence and creation of a junction

tree. Obtaining a junction tree is, at an implementation level, the most important part

of this abstract library. Now that we have a junction tree, let us have a closer look at

the message-passing algorithm.

3.3 The message-passing algorithm

Given a well-defined junction tree, the GDL works as a message-passing algorithm [20].

It is summarized in Figure 14.

The GDL iteratively updates a table µi,j : DIi∩Ij → K for each node Ii, for all Ij ∈
N(Ii), where N(I) is the set of all neighbors of I . The µi,j table contains “messages”

passed from from node Ii to node Ij—each node “sends a message” to a neighbor

when it has received one from all its other neighbors first “upward” then “downward.”

July 2014 Page 16 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

x3, y3

x1, x2, x3, y3

x1, x2, y2, y3

x1, y1, y2, y3

y1, y2, y3

Figure 13: A junction tree for the local domains in Figure 12

0. For each node Ii, for each node Ij ∈ N(Ii): µi,j ← 1;

1. For each node Ii, for each node Ij ∈ N(Ij):

µi,j(xIi∩Ij)←
∑

xIi−Ij
∈DIi−Ij

αi(xIi)
∏

Ik∈N(Ii)

k 6=j

µk,i(xIk∩Ii);

2. For each node Ii: βi(xIi)← αi(xIi)
∏

Ik∈N(Ii)

µk,i(xIk∩Ii);

Figure 14: The GDL message-passing algorithm

The effect of the GDL message-passing algorithm of Figure 14 is illustrated in Fig-

ure 15 for the junction tree shown.

The algorithm exchanges messages between the vertices of the junction tree until

enough messages have been send. When this situation is met a vertex is able to calcu-

late its state that correspond to the global kernel for the corresponding local domain.

There are two cases: the single-vertex problem and the all-vertex problem. In the first

one, all the messages are sent toward one specified vertex. The purpose is to ensure

that the vertex receives a message from all the other vertices of the graph by the end.

In the all-vertex problem, messages are exchanged in all the directions until all the

vertices of the junction tree had received all the messages. However, in both cases

the fundamental principle of the message-passing algorithm stays the same. The only

information that changes is the number and destination of the messages. When a vertex

July 2014 Page 17 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

I1 = {1}

I2 = {1, 2} I3 = {1, 3}

I4 = {2} I5 = {2, 4}

i, j µi,j(xIi∩Ij)

1 3, 1 µ3,1(x1) =
∑

x3
α3(x1, x3)

2 4, 2 µ4,2(x2) = α4(x2)
3 5, 2 µ5,2(x2) =

∑
x4

α5(x2, x4)

4 2, 1 µ2,1(x1) =
∑

x2
α2(x1, x2)µ4,2(x2)µ5,2(x2)

5 1, 2 µ1,2(x1) = α1(x1)µ3,1(x1)
6 1, 3 µ1,3(x1) = α1(x1)µ2,1(x1)
7 2, 4 µ2,4(x2) =

∑
x1

α2(x1, x2)µ1,2(x1)µ5,2(x2)

8 2, 5 µ2,5(x2) =
∑

x1
α2(x1, x2)µ1,2(x1)µ4,2(x2)

Figure 15: Example of the effect of the GDL message-passing algorithm

i is required to send a message to a vertex j the following rule is used:

µi,j(xSi
∩ xSj

) =
∑

xSi
\xSj

∈ASi
\ASj

αi(xSi
)

∏

vk adj vi
k 6= j

µk,i(xSk
∩ xSi

) (5)

Note that Equation (5) uses the notation u adj v (“adjacent”) for two vertices u and

v to mean that there exists an edge between u and v. Using it is equivalent to the

conditions on indices used in Figure 14. This is because the formula computes the

product of messages received from adjacent vertices except for the one to which the

message is destined. Hence, the condition vi adj vk and k 6= j whenever i is the

current vertex and j is the recipient of the message.

When i is required to send a message to j, it calculates the product of its local kernel

with all the messages it haves previously received. The rule is that a vertex only send a

message when it haves received a message from all its neighbors. Therefore, the mes-

sages start at the leaves and progress inward in the tree. For the single-vertex problem,

the junction tree found in the previous section must be oriented. The first node must

be the vertex for which we want the result. Transform a non-directed junction tree into

an oriented junction tree is not difficult. In the library Cedar.Gdl a simple recur-

sive method do the transformation. For the single-vertex message passing, we use the

recursive algorithm described in Algorithm 3.

Because this is for the single-vertex problem, the messages are sent in one direction

only. Furthermore, the junction tree is directed. This allow this basic algorithm to

perform quite well. However, in most cases, it is the all-vertex problem that is used.

This is because its complexity is only four times that of the single-vertex problem. The

July 2014 Page 18 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

The current vertex is named vc, its father vf , and the list of its children Vi;

Start at the vertex for which the algorithm must be performed;

Enumerate the number of message nm received, and vc;

if vf received at least |Vi| − 1 messages then

Send a message to vf using Definition 5;

else

Perform Algorithm 3 recrusively on all the children in Vi;

end

Algorithm 3: Heuristic for the “single-vertex” message-passing algorithm

rules are the same but this time the tree is not directed. This is because the messages are

exchanged in both directions, up and down the tree. Therefore, the algorithm described

in Algorithm 3 can no longer be used. For the all-vertex problem, we use Algorithm 4.

In both the single-vertex and the all-vertex problem, when a vertex has received all its

expected messages, it calculates its state using the formula:

σi(xSi
) = αi(xSi

)
∏

vk adj vi

µk,i(xSk
∩ xSi

) (6)

This is simply the multiplication of the local kernel by the product of all the previ-

ously received messages. This state of the vertex is the objective function at the local

domain associated to the current vertex. At this point the GDL’s algorithm terminate.

The Cedar.Gdl library has obtained a simplification of the GDL standard on the

instantiated semiring.

4 The Cedar.Gdl Library Implementation

The following sections give an overview of the implementation of the Cedar.Gdl

library in Java. These sections are not a tutorial or a user manual. The focus here is on

the way the classes goes together and how they interact between each over.

4.1 The abstract core

This section introduces the abstract classes and explains how they allow to express

instances of GDL problems.

In mathematics, every computation can be reduced to a succession of operations be-

tween two atoms. For example:

3∑

i=1

xi = (x1 + x2) + x3 (7)

July 2014 Page 19 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Let vc denote the current vertex, and Vn the list of vc’s neighbors ;

Create a list with all the vertices of the junction tree and call it Lv;

For every vertex in the list, create a 2-row table, each row of size the number of

the vertex’s neighbors. This table is used to determine for any given vertex which

vertices have already sent a message to it, and which it has already sent a

message;

For all the vertices in the list, let Nm be the number of messages received.;

while All the message have not been sent do

index = 0;

while index < |Lv| do

vc = the vertex at the position index in Lv;

if vc received at least |Vn| − 1 messages then
Search in the table to which vertices vd, it must send a message (vc
must have received messages from all the other vertices of Vn, and

not already sent a message to vd);

Send a message to vd and update the tables of vd and vc;

else
Go to the next vertex in the list;

end

index++;

end

end

Algorithm 4: Heuristic for the “all-vertex” message-passing algorithm

Equation (7) can be seen as, an operation + between the atoms x1 and x2, and an

operation + between the result of the previous operation and x3. We adapt the idea

into an abstract class, Abstract Atom. This class is used in the library to represent

a mathematical element or an operation. Abstract Atom is the most basic class

of the library Cedar.Gdl. Its purpose is to required the others class of the library

to implement specific methods. Having common methods to all the classes allow to

call them without knowing the real type of the class. It is this abstraction that allows

to use generic semiring. Because it is abstract, anyone who would like to implement

a class extending Abstract Atom would have to implement the toString(),

calculate() and returnVariableUsed()methods. The method toString()

need to be instantiated in order to have text feedback of the result of the GDL. This

method must return a String that describes the class (e.g., for a function,“f” of two

variables the toString()method could return “f(x,y)”).

As displayed in Figure 16, two classes extend Abstract Atom: Abstract Fun-

ction and Abstract Operation. The class Abstract Operation must be

extended by every class used in the Cedar.Gdl library and representing an operation.

The purpose of this class is to hide the class Abstract Atom from the user. Because

it extends Abstract Atom and does not implement the three functions mentioned

earlier, any class extending Abstract Operationmust implement these methods.

July 2014 Page 20 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Abstract SetK Abstract Atom

Abstract Operation

Abstract Function

Abstract CommutativeMonoid

Abstract CommutativeSemiring

E
xtends

E
x
te

n
d
s

U
se

s

In
st
an

tia
te

s

In
st

an
ti

at
es

Figure 16: Existing relations between the abstract classes

The second class Abstract Function represent a mathematical function. This

class requires instantiating a method functionImplementation() instead of

the inherited method from Abstract Atom, calculate(). This method repre-

sents the core of the function.

The three classes Abstract Atom, Abstract Operation and Abstract -

Function, are here to handle the calculations in the library. The three overs classes

that we can see in Figure 16 are used to represent the required framework of the GDL

(i.e., a commutative semiring). A commutative semiring is composed of two commu-

tative monoids and one set. Therefore, the implementation in the library reproduces

this organization. The class Abstract Monoid represents a commutative monoid

and requires instantiating three methods: calculate(), calculateOnSet()

and operation(). These three methods are to handle the three possible cases:

• The method operation() is to calculate the result of a binary operation (e.g.,

for a “+” monoid, this method should handle the addition).

• The second method is calculate() and handles the operation for subclasses

of Abstract Atom. In the library most calculation is not actually performed

until the end of the algorithm. Instead of computing results during the message-

passing algorithm described in Section 3.3, the library constructs objects repre-

senting unevaluated mathematical expressions. This will be discussed at greater

length in Section 4.2.

July 2014 Page 21 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

• The method calculateOnSet() handles the sum over sets for expressions

of type Abstract Atom.

All the classes presented in this section represent the core of the library Cedar.Gdl.

They all need to be instantiated corresponding to your own problem in order to perform

computation with the library.

4.2 Classes implementing the GDL

This section presents some of the classes that are used in addition to the abstract classes

presented in Section 4.1. These are used to construct a junction tree and compute the

message-passing algorithm using the implemented abstract core.

Once a GDL problem is instantiated using the classes LocalDomain and LocalKer-

nel, the library Cedar.Gdlwill start the algorithm described in Section 3.2. All the

steps described are implemented by the method of the class GraphManipulation.

First, the library will construct the local domain graph using the classes Vertex, and

Edge. These two classes represent respectively a vertex and an edge. This representa-

tion allow to spare calculations when the edges have to be deleted or stored in memory

as for the Kruskal’s Algorithm [17]. Then, if the library have to compute the moral

graph like in Figure 8, a specific class MoralGraphCell is used.

We use a specific class for the moral graph construction. The triangulation of the

moral graph is performed by the method triangulateMoralGraph that imple-

ments Tarjan’s Elimination Algorithm (see Algorithm 1). At this point the library

Cedar.Gdl possesses the desired junction tree. The last step before the beginning

of the message-passing algorithm is to modify the intern representation of the junction

tree. So, a class JunctionTreeCell is used. This class helps implementing the

message-passing algorithm. Much information is required during the message-passing

phase and, more importantly, the children and parents of a cell have to be easily acces-

sible. This helps the message-passing algorithm to achieve good performances.

Now that a junction tree is created, the message-passing algorithm can start. A class

messagePassing contains all the methods related to the message-passing algo-

rithm. To send a message from a vertex i to a vertex j the algorithm described in

Algorithm 5 is used.

When this method is used several times and messages exchanged, mathematical ex-

pressions are constructed as shown in Figure 17. Creating such expressions, which are

Abstract Atom objects, is the objective of the GDL. On such an expression, one

may invoke the toString() method to obtain a simplified syntactic form, or the

calculate()method to evaluate it.

This section was a brief overview of Cedar.Gdl library’s archtecture. For detailed

information about how use it, please refer to the Cedar.Gdl user manual [31] and its

Javadoc documentation.11 In the next section, we present original uses of the GDL

and how to realize them with the Cedar.Gdl library.

11
http://cedar.liris.cnrs.fr/documents/Cedar.Gdl-javadoc.html

July 2014 Page 22 / 38

http://cedar.liris.cnrs.fr/documents/Cedar.Gdl-javadoc.html

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Data: A vertex i and a vertex j with their respective lists of received messages

mi and mj

Create a list Li of the variables presents in i and not in j;

Create a result object, r initialized with the local kernel of i;

while All the messages in mi haven’t been picked do
pick a message m in mi and do the multiplication of m by r and store the

result in r;

end

if Li is not empty then

Use the method doAdditionOnSet() of the + monoid on r and Li;

end

r is now the message that must be sent from i to j;

Algorithm 5: The message-passing algorithm implementation

× Multiplication

∑
x∈A1

f(x, y) g(y, z) SumOperationOnset Function

α(y, z)
def
=

∑
x∈A1

f(x, y)× g(y, z)

Figure 17: An expression evaluation and decomposition and a possible representation

5 Original Contribution

5.1 Constraint satisfaction with the GDL

This section explains how to use our GDL library for solving Constraint-Satisfaction

Problems (CSP). The idea is to use functions to represent the constraints and then use

the Cedar.Gdl to solve the problem so created.

Bistarelli, Rossi and Montanari [7] discuss the use of semirings as a framework for

Constraints-Satisfaction Problems. A commutative semiring, with the logic operation

“and” as operator for the multiplicative monoid, “or” as additive monoid and the set

of boolean as Set K, can support a Constraint-Satisfaction Problem. Because of its

genericity the library can handle such commutative semiring.

Constraint-Satisfaction Problems are mathematical problems, defined as a set of ob-

jects that must satisfy a number of constraints. This kind of representation can be use

to represent real-life cases as well as fully abstract problems. More formally, a CSP

is defined by a set of variables x1, . . . , xn join to a set of constraints c1, . . . , cm. Each

July 2014 Page 23 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

variable xi have possible values on a set Si, and is constrained by a set of constraints

Xi. A parallel with the input of the GDL, with local domains and local kernels, can

be made. The first step is to express the constraints as functions. A constraint, and its

equivalent function must return identical output for a same input. Then, for each func-

tion a local domain must be created with the variables needed to execute the function.

The local kernel will be the function itself. Once the problem have been transformed,

an additional pair 〈local-domain; local-kernel〉must be created. The set of all the vari-

ables must be used as local domain and the multiplication identity as local kernel.

By merging all these facts, it is possible to transform a Constraint-Satisfaction Problem

into a GDL instantiation that can evaluate an or/and expression, thereby solving the

constraint. The proof of this is in Appendix Section A.

An example of a CSP that can be solved using the Cedar.Gdl library is the “N -

Queens problem.”

DEFINITION 12 (N -QUEENS PROBLEM) The N -Queens problem consists in posi-

tioning N chess queen in a N ×N chessboard such that not two queens can take each-

over. For those not familiar with chess, this is equivalent to not having two pieces in

the same row, column or diagonal.

Let us takes the example of the 4-Queens problem. The first step is the conversion of

the constraints into equivalent functions. The constraints of the N -Queens problem

lies with the queens’ positioning. However, this global constraint can be split into

several simpler constraints. Let us assume that there exists a function that takes two

queens’s positions and returns whether or not the queens capture one another as a

Boolean. If we use this function for all the different combinations of two queens, then

the conjunction of these functions is equivalent to checking whether a combination of

queens’ positions is valid or not. Assume also that we can find a way to transform the

queens’ positions into variables and enumerate all the possible combinations of two

variables. Then, it is possible to transform the N -Queens problem into a GDL problem

and solve it with the library.

A queen’s position on a chessboard is defined by its coordinate (x,y). In that case

the origin must be define, for us the origin will be the top-left corner of the chess-

board. Therefore for any queen Qi i ∈ N , we can define xi and yi, respectively the

x-coordinate and y-coordinate of Qi. Then, we can create a function f(xa, xb, ya, yb).
The function f would check whether: xa 6= xb, ya 6= yb and |xa − xb| 6= |ya − yb|.
If all these conditions are met, then the two queens can coexist. The only thing left is

to find a set of combinations of 4 variables from 2×N , which ensures that no queens

can take each-over. Such a mathematical function exists; the combination. Therefore,

all the criteria are met, and it is possible to transform the N -Queens problem into a

GDL’s problem. However, it is possible to reduce greatly the calculations. The goal of

the N -Queens problem is to find all the different set of queens. Having Q1 in position

p1 and Q2 in p2 is equivalent to Q1 in p2 and Q2 in p1. It is then possible to associate

a fixed yi (i.e., y-coordinate) to every xi (i.e., x-coordinate) variable. Doing so, the

number or variables is reduced by half.

For the 4-Queens problem, four variables x1, x2, x3 and x4 are associates with the

July 2014 Page 24 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

x-coordinate 1, 2, 3 and 4, respectively. The associated value of a variable is denoted

as xAi
, xBi

. Therefore, the function that checks whether two queens are in a correct

position must be adapted. Now, the function call f(xa, xb) must verify the following

two properties:

xa 6= xb, xBa 6= xBb
and |xa − xb| 6= |xBa − xBb

|.

The problem described in Table 2 can then be instantiated.

Local Domain Local Kernel

{x1, x2} f(x1, x2)
{x1, x3} f(x1, x3)
{x1, x4} f(x1, x4)
{x2, x3} f(x2, x3)
{x2, x4} f(x2, x4)
{x3, x4} f(x3, x4)
{x1, x2, x3, x4} true

Table 2: GDL formulation for the 4-Queens problem

In conclusion, the GDL algorithm can be applied for solving CSPs. However, the trans-

formation of the constraints into functions is not always a straightforward exercise.

5.2 A modification of the GDL algorithm

In most cases, the algorithm proposed in the GDL works fine. However, during the

implementation of some Belief Propagation networks, we realized that there are cases

that do not quite fit the GDL algorithm as described. This section discusses such cases

and solutions we propose to make the GDL capable of handling them.

As discussed earlier, the basic idea for the creation of the junction tree is to separate

two cases: the case where the maximal weight spanning tree is a junction tree, from

the case where the triangulation of the moral graph is needed. This is in the second

case that the problem resides. After the creation of the moral graph, the next step is

to triangulate it and form a junction tree from its cliques. Once this is done, all the

local domains must be associated with a newly created clique and each clique must

be merged with one local domain. However, in some cases not all the cliques can be

merged because some of them cannot be associated with any local domains. In such

cases, the resulting junction tree contains more vertices than the initial local domain,

which makes the message-passing algorithm impossible—see Figure 18 for example.

This can be seen as a GDL problem by defining the local domains and local kernel (as

described in Table 3). For this problem the creation of the local domain graph, and

a maximal-weight spanning tree will lead to the conclusion that the maximal-weight

spanning tree is not a junction tree. Therefore, the creation of the moral graph, and its

July 2014 Page 25 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

a b c

d e i

f g

h

Figure 18: A belief-propagation network

Local Domain Local Kernel

{a} p(a)
{b} p(b)
{c} p(c)
{a, b, d} p(d | a, b)
{b, e} p(e | b)
{c, i} p(c | i)
{d, f, i} p(f | d, i)
{e, g} p(g | e)
{f, g, h} p(h | f, g)

Table 3: GDL formulation for the Bayesian network in Figure 18

triangulation is required. The method was described in Section 3. On our ezample, it

yields the moral graph of Figure 19 and its triangulation shown in Figure 20.

It is easily verifiable that the graph is chordal. We can identify the following list

of cliques: ({c, i}, {i, f, d}, {f, h, g}, {f, g, d}, {d, g, e}, {d, e, b}, {a, d, b}). In this

example, we can see that no local domain can be merged with the clique {f, g, d}.
Therefore, if a junction tree was to be created from this triangulated moral graph a node

would not be associated with a local kernel. This would prevent the GDL algorithm to

be performed. Later in this section, we present two algorithms to deal with such cases,

and proofs of their correctness.

The first solution is trivial and consists in the creation of the junction tree associated

to the triangulated moral graph with the additional vertices (for now, for convenience,

we call such a tree an original tree). Then a vertex corresponding to a non associated

clique must be merge with one of it’s neighbor. The resulting cell will have a local

domain equal to the union of the variables presents in both vertices. The local domain

must be the one of the cell which is merged to the vertex of the non associated cliques.

Most of the time, several solutions are available for the choice of the vertex to merge.

July 2014 Page 26 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

c

i

d f

a h

b g

e

Figure 19: The moral graph for the belief network in Figure 3

c

i

d f

a h

b g

e

Figure 20: A triangulation of the moral graph of Figure 3

The Algorithm 6 display a heuristic that behave efficiently on most cases.

The merge procedure must be repeated until there is no non-associated vertex left in the

tree. The resulting tree is called a merged tree. This method enlarges local domains,

which is why the choice regarding which cells merge must be done carefully. But,

doing so allows the GDL algorithm to be performed on the newly created junction

tree.12

The second solution is to create a dummy function equal to the identity of the mul-

tiplication monoid from the current commutative semiring, and define it as the local

kernel of the non associated clique. Then, the creation of a vertex for the junction tree

is possible by defining the set of variable as local domain, and using the created local

kernel. The proof is described in the appendix, Section B.2.

12See the proof in Appendix Section B.1.

July 2014 Page 27 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

if there are neighbors with a local kernel associated then

if there is several neighbors then
Select the one for which the created clique will be the smallest

else
Pick the only one

end

;

else
Merge the two vertices. However in this case the created vertex will also have

to be associated;

end

Algorithm 6: Vertex-selection algorithm

5.3 Modeling Allen’s interval algebra with the GDL

In this section, we discuss how one may use the generic algorithm of the GDL to

perform qualitative temporal reasoning using Allen’s Interval Algebra.13.14. We also

discuss some ideas for future developments.

In 1983, Allen created thirteen basic relations between time intervals (Figure 21. The-

ses thirteen relations are able to describe any pair of time intervals.15 This represen-

tation of time can be used for temporal reasoning, and has been in so used AI. It has

since been extended in various ways [3, 22, 4, 33]. As it is possible to formalize the

Allen’s Interval Algebra operations into a commutative semiring (See Section 5.3 for

a detailed explanation), it is then possible to use the GDL algorithm to solve this kind

of problems.

Allen’s Interval Algebra represents all the possible relations between two time’s in-

tervals. It also provides tools to compute operations between them, and reason about

them. An important point about this approach is that it is completely qualitative (i.e.,

no time span are used for interval’s description).

Figure 21: Allen’s thirteen basic relations

Allen’s Time-Interval Algebra has no relation with the Generalized Distributive Law.

However, as said previously, the GDL is a parametric solving method for any applica-

tion in which a ring structure can be exposed. Therefore, if such organisation could

13
http://www.ics.uci.edu/˜alspaugh/cls/shr/allen.html

14This work was not completed in [32]
15For more details about these relations, please refer to [29].

July 2014 Page 28 / 38

http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

be found it would be possible to use the Cedar.Gdl to solve problem related to

Allen’s-Interval Algebra.

An example of a problem could be: At a moment A two events can occurs a1 and a2.

Then, at a moment B the even b1 can occur if a1 appended in A, and b1 and b2 can

occur if a2 appended. Now let’s transform this problem into a GDL instance.

The first step is to create variables to compose the local domains. These variables

would represent the different possibles events at a given moment (e.g., a variable xA
would have for set {a1, a2}). It is possible to use this to define local domains. Each of

them must represent a given time and its relation with past events. Therefore, a local

domain must be composed of the variable representing the events, and the variables of

the related previous events (e.g., for A a local domain {xA} must be created, and for

B {xA, xB}). The next step is to instantiate the local kernels. A local kernel must be

function of its local domain. Therefore, each local domain di must be associated with

a local kernel ki defined by a function fi. A function must return the Allen’s relation

between the events described by the variables of the associated local domain.

In [4], a semiring instance that could handle Allen’s Interval Algebra can be made

explicit. This semiring has the logical “or” as + operator and Allen’s composition

as × operator. This semiring allow to compose Allen’s relations and thus, to solve

Allen’ Interval problems. By using the previously defined representation for an Allen’s

problem, it is possible to transform it into a GDL instance.

However, the function are as numerous as the number of local domain, and Allen’s

expression are between two intervals. Consequently, we have an additional function.

This function is the one associated to the first moment of the sequence (i.e., in our

example A). Consequently, we introduce a neutral element for Allen’s Algebra Id that

must be returned by this function (i.e., fA(xA, xb) must return Id). This representation

is then capable of finding the result of the composition of several Allen’s interval.

However, the library Cedar.Gdl cannot detect incorrect expressions and therefore,

cannot determine whether a expression is actually satisfied or not.

This is initial work toward expressing Allen’s temporal algebra in the context of the

GDL. Although it needs to be completed and tested, we have shown that it should be

possible to be cast into the framework of our GDL library.

6 Implemented Instances of the Cedar.Gdl Library

This section presents experiemental test results otained with some actual implemented

cases of the GDL such as the Fast-Hadamard Transform (Section 6.1) and Judea Pearl’s

Belief Propagation (Section 6.2).

All the computations were performed using a laptop with an IntelCore i5-3210M and

8G of RAM. All the experiments listed below are reproducible as all these cases are

implemented in the library Cedar.Gdl. All tests were performed five times and the

average value of the execution time recorded.

July 2014 Page 29 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

6.1 The Fast-Hadamard Transform

We implemented two ways for doing the Fast-Hadamard Transform: one with a func-

tion of three variables as in the example of the Generalized Distributive law, and

one with a function of ten variables. In both cases, the function returns the sum of

its parameters. To compare the results, we use Apache’s Commons Math Library16

(commons-math3-3.2.jar). In Table 4, we can see that the Apache library

Try 1st 2nd 3rd 4th 5th Average

Cedar.Gdl 39 40 38 38 39 39

Apache 9 9 9 9 9 9

Table 4: Execution time in MS for the FHT of a function of three variables.

takes only a fourth of the time of the Cedar.Gdl. This difference is due to the

fact that the two methods are different, the Apache library use as entry a list of reel

which correspond to the result of the function. In the Cedar.Gdl cases, the input in

only the function and the library also compute the result of the function. Furthermore,

the GDL algorithm performs better in the all-vertex problem because of all the stored

intermediate results. In the all-vertex problem, after computation of the first vertex,

most of the calculations are already done for the other vertices’ of the graph. The

second reason is that most of the time is not spent in the message passing but in the

construction of the junction tree.

It comes as a result that the library is better suited for problems where the all-vertex

method is needed.

6.2 Judea Pearl’s belief propagation

As explained in Section 6.1, in order to test our implementation on a problem that

requires the all-vertex GDL version, we developed Judea Pearl’s Belief Propagation as

a second application.

This section presents the results using the library on different Bayesian Networks. It

makes little sense to compare these results with other existing solutions because of the

variety of software and libraries that exist. However, we report the results we obtained

so that anyone may compare the times we obtained with those obtained by one’s own

solution. Each table displays the time required to compute the probabilities of all the

nodes in the tree (i.e., for a node with 100 nodes, all 100 probabilities are computed).

The calculation over a simple Bayesian network as described in Figure 22 are ex-

tremely quick. However, the number of nodes drastically increase the computation

time. If done in the most straightforward manner the calculation time should double

for each new node added to the tree. However, the GDL allows to save a large part of

the computation. This allow big Bayesian networks to be computed. We can see in

16
http://commons.apache.org/proper/commons-math/

July 2014 Page 30 / 38

http://commons.apache.org/proper/commons-math/download_math.cgi
http://commons.apache.org/proper/commons-math/

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Pneumonia Tuberculosis

Lung Infiltrate

X Ray Sputum Smear

Figure 22: A basic belief-propagation network

Try 1st 2nd 3rd 4th 5th Average

Cedar.Gdl 38 34 36 38 39 37

Table 5: Execution time in milliseconds for the example displayed in Figure 22

Figure 6 that it takes 15 seconds to compute the Belief Propagation over a tree with

three-hundreds nodes.

Try 1st 2nd 3rd 4th 5th Average

Cedar.Gdl 15.1 15.1 15.2 15.1 15.0 15.1

Table 6: Execution time in seconds for a Bayesian network with 300 nodes

However, we can see in Figure 7 that the required time augments very quickly when

nodes are added. It is important to notice that the time also depends on the topology

of the Bayesian Network. Indeed, the topology of the Bayesian Network impacts the

junction tree and consequently the simplification.

From these experiments with, and tests of, our Cedar.gdl abstract librarywhen for

the regeneration of Bayesian network applications, we could observe that it performs

as predicted in the Aji-McEliece paper.

6.3 Constraint processing

We now describe how to cast constraint-processing as a GDL instance. Section 6.3.1

recalls the essence of Constraint-Satisfaction Problems. Then, Section 5.1 shows how,

under certain conditions, it is possible to use the Cedar.Gdl library to generate a

Constraint-Satisfaction Solver.

July 2014 Page 31 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

Try 1st 2nd 3rd 4th 5th Average

Cedar.Gdl 1.44 1.44 1.44 1.43 1.44 1.44

Table 7: Time in milliseconds for a Bayesian network with 310 nodes

6.3.1 Constraint-satisfaction problems

Citing [7], it is claimed that:

“. . . Constraint-Satisfaction Problems (CSPs) [. . .] are a very expressive

and natural formalism to specify many kinds of real life problems. In fact,

problems ranging from map coloring, vision, robotics, job-shop schedul-

ing, VLSI design, etc., can easily be cast as CSPs and solved using one

of the many techniques that have been developed for such problems or

subclasses of them.”

Formally, a Constraint-Satisfaction Problem is defined by a set of variables x1, . . . , xn
occurring in a set of constraints c1, . . . , cm. Each variable xi have possible values on

a set Si, and is constrained by a set of constraints Xi.

Most of the algorithms for solving CSPs search systematically through the possible

assignment of values to variables. Such algorithms are complete in that they guarantee

finding a solution if one exist, or prove that none exists. In [8], Brailsford, Potts, and

Smith, present a review of algorithms and applications related to CSP. For example,

the well-known problem of the location of facilities is a type of OR problem which can

be seen as a CSP. For every problem, very efficient algorithms have been developed in

order to solve them in an extremely efficient manner. However, this requires to have

several algorithms depending on the type of problem for optimal resolution.

In addition, more flexible types of CSP have been proposed, such as Probabilistic CSP,

Fuzzy CSP, or Weighted CSPs.17 With these more general types of CSPs, is it possible

to model a larger number of problems as CSPs. However, different algorithms are

required depending on the type of the problem. An abstract library using the algorithm

of the GDL enables rendering different types of CSPs with a single algorithm (viz., the

GDL by mere instantiation of an appropriate commutative semiring. Then, optmizing

a single abstract algorithm as opposed to several specific ones offers an interesting

alternative. Supplementing such an abstract design with classes of problem-dependent

heuristics factors out all common features, while staying flexible to exploit addditional

structure specific to each instance.

How to use the algorithm of the GDL in order to instantiate a Constraint-Satisfaction

Problem is discussed at greater length in Section 5.1.

17
http://ktiml.mff.cuni.cz/˜bartak/constraints/extend csp.html

July 2014 Page 32 / 38

http://ktiml.mff.cuni.cz/~bartak/constraints/extend_csp.html

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

6.3.2 Constraint solving

Here, we present results obtained for some Constraint-Satisfaction Problems (CSP).

The CSP of our experiemnt is the N -Queens Problem (see Definition 12). We did

measurements with four and six queens. The timer stops only when all the solutions

have been found.

Try 1st 2nd 3rd 4th 5th Average

4-Queens 44 45 44 44 44

6-Queens 402 402 403 402 403 402

Table 8: Execution time in milliseconds for the N -Queens problem

As can be seen in Table 8, the 4-Queens process is executed quickly. However, the

6-Queens problem takes some time. This is because the Cedar.Gdl library works

similarly to Prolog and its algorithm mimics a backtracking algorithm. The more

possibilities there are the more time it will take to explore all of them.

7 Conclusion

7.1 Recapitulation

Our experimentation with the design, implementation, and use of Cedar.Gdl Java

library has yielded some interesting results. For one, its genericity has been verified

and tested to regenerate test examples. Further, its reusablity has also been verified

as we used on a new use case (constraint solving) to generate a constraint solver for

the N -Queens’ problem. More applications in varied domains can be derived and

generated in a similar manner. As long as the commutative-semiring structure required

by the library is respected, it is possible to use the Cedar.Gdl Java library to do so.

7.2 Perspectives

The most intriguing future work would be to implement Allen’s Interval Algebra fully.

Since its basic commutative-semiring structure has been exposed, it is now possible

to instantiate a GDL problem on Allen’s Interval Algebra to generate an interval-logic

reasoner’s implementation. It would be as well interesting to investigate other novel

instantiations of the GDL such as, for example, Fuzzy Set reasoning. Finally, the GDL

algorithm may show potential for running on parallel architectures for Big Data such

as Hadoop/MapReduce to optimize and solve large computational mathematical prob-

lems.

July 2014 Page 33 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

A Correctness of the construction of Section 5.1

PROOF A vertex calculates its state only when it has received messages from all it neighbors.

Furthermore, a vertex only sendsf a message to another vertex when it has received messages

from all its neighbors. Consequently, a vertex only calculates its state when it has received, or

been forwarded, a message from every other vertex in the junction tree.

When a vertex vi needs to send a message to a vertex vj , the following rule is used:

µi,j(xSi
∩ xSj

) =
∑

xSi
\xSj

∈ASi
\ASj

αi(xSi
)

∏

vk adj vi
k 6= j

µk,i(xSk
∩ xSi

) (8)

Furthermore, the formula used to calculate the state of a vertex is:

σi(xSi
) = αi(xSi

)
∏

vk adj vi

µk,i(xSk
∩ xSi

). (9)

From Equation (8), and Equation (9), we can conclude that the state of the vertex corresponds

to the multiplication of all the local kernels of the tree. However, the multiplicative operation,

for a constraint satisfaction problem, is the logic operation “and.” Therefore, the vertex eval-

uates to the validity check of all the constraint functions. Furthermore, because the addition

operation is the logic operation “or,” and because of Equation (8), an “or operation is per-

formed for all the values of the variables which are not included in the current local domain.

Hence, the correctness of our constraint-solving instantiation is entailed by the algebraic cor-

rectness of the GDL algorithm for evaluating a commutative-semiring expression proven by Aji

and McEliece in [2]. �

B Correctness of the GDL Modification of Section 5.2

B.1 First method

PROOF The GDL algorithm requires a junction tree. Hence, if the merged tree can be proven

to be a junction tree, then the GDL algorithm can be used. Furthermore, the transformation

process from the original junction tree to the merged tree can be seen as a succession of merges

of two vertices. If a merge of two vertices in a junction tree creates a tree which is still a

junction tree, then the method is correct. Let us show this.

We denote the non-associated vertex as va and the vertex that must be merged as vb. Us-

ing the same conventions as before, the associated set of variables present in each vertex is,

respectively, denoted by Sa and Sb.

The original tree, which is a junction tree, can be seen as a maximal weight spanning tree. In

the GDL, the authors define w∗ and wmax as:

w∗ =

M∑

i=1

|Si| − n (10)

and wmax, as the weight of the maximal weight spanning tree.

July 2014 Page 34 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

For the original tree we have wmax = w∗. But, if two vertices are merged in the tree w∗ and

wmax will be impacted. First, the edge between the two merged vertices will no longer exist,

so wmax will decrease from the weight of the edge, |(Sa ∩ Sb)|. Then, the vertex va will no

longer exist so, w∗ will decrease by |Sa|. However, because of the merge, vb will be extended

by |Sa − (Sa ∩ Sb)|. The result is that, in total, w∗ will increase by |Sa − (Sa ∩ Sb)|. And so,

w∗
new w∗

old − |(Sa ∩ Sb)|. At this stage, we have wmax = w∗ for the merged tree. However,

one question remains. Do the variables added to vb increase the weight of the edges between

vb, and its neighbors? In that case wmax would be different from w∗. In a junction tree, for any

two vertices vi and vj , the intersection of the corresponding labels, (viz., vi ∩ vj), is a subset

of the label on each vertex, on the unique path from vi to vj . Consequently, no neighbors of

vb can contain a variable which was not in (Sa ∩ Sb). Therefore the merged tree is a junction

tree. �

B.2 Second method

PROOF Let vid be the vertex that has the identity of the multiplicative monoid set as local

kernel. Intuitively, vid will act as a simple “message’s forwarder” in the propagation phase of

the GDL. When it receive messages, vid applies the + operation, over a set variable, on the

product× of all the received messages.

In a junction tree, when a vertex vi needs to send a message to a vertex vj , the following rule

is used by the GDL:

µi,j(xSi
∩ xSj

) =
∑

xSi
\xSj

∈ASi
\ASj

αi(xSi
)

∏

vk adj vi
k 6= j

µk,i(xSk
∩ xSi

) (11)

When the local kernel is set to the identity of the multiplication monoid, the previous rule is

simplifies to:

µi,j(xSi
∩ xSj

) =
∑

xSi
\xSj

∈ASi
\ASj

∏

vk adj vi
k 6= j

µk,i(xSk
∩ xSi

) (12)

As seen in the first method, it is possible to merge the non-associated vertex with an other

vertex, and this will allow the GDL algorithm to work. Using this observation, the extended

junction tree appears as a merged junction tree with the difference that, instead of having

merged cell, we keep the cells separate. We call such a pair of cells a cell system. We must

verify that the messages, that passed through the cell system are the same as the ones that

would transit through the merged cell.

The set of variables in the merged cell is equal to the union of the set of variables of the cell’s

system. Consequently, once the messages have pass through the cell system, the variables, on

which the + operation is performed, are the same in both methods. This is because of the

message rule Figure 11. Furthermore, the multiplication’s identity multiplied by a local kernel

α is equal to α, which would be the local kernel of the merged cell.

This proves that this method is correct. �

July 2014 Page 35 / 38

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

References

[1] Srinivas M. Aji. Graphical Models and Iterative Decoding. PhD thesis, California Insti-

tute of Technology, Pasadena, CA, USA, May 2000. [Available online18].

[2] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE Trans-

actions on Information Theory, 46(2):325–343, March 2000. [Available online19].

[3] James F. Allen and Patrick J. Hayes. Moments and points in an interval-based temporal

logic. Computational Intelligence, 5(4):225–238, May 1990. [Available online20].

[4] Silvana Badaloni and Massimiliano Giacomin. A fuzzy extension of Allens interval

algebra. In Evelina Lamma and Paolo Mello, editors, AI*IA 99: Advances in Artifi-

cial Intelligence—Selected Papers of the 6th AI*AI Congress, pages 155–165, (Bologna,

Italy), September 1999. Italian Association for Artificial Intelligence, Springer-Verlag.

Vol. 1792 [Available online21].

[5] Ann Becker and Dan Geiger. A sufficiently fast algorithm for finding close to optimal

junction trees. In Proceedings of the Twelfth International Conference on Uncertainty in

Artificial Intelligence, pages 81–89. Morgan Kaufmann Publishers Inc., 1996.

[6] P. George Benson, Shawn P. Curley, and Gerald F. Smith. Belief assessment: An un-

derdeveloped phase of probability elicitation. Management Science, 41(10):1639–1653,

October 1995. [Available online22].

[7] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint solving over semir-

ings. In IJCAI (1), pages 624–630. Citeseer, 1995.

[8] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction

problems: Algorithms and applications. European Journal of Operational Research,

119(3):557–581, 1999.

[9] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intel-

ligence, 113(1–2):41–85, September 1999.

[10] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[11] Arthur P. Dempster, Nan M. Laird, Donald B. Rubin, and et al.. Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal statistical Society,

39(1):1–38, 1977.

[12] Yariv Ephraim and Neri Merhav. Hidden markov processes. IEEE Transactions on In-

formation Theory, 48(6):1518–1569, 2002.

[13] Jensen V. Finn. An introduction to Bayesian networks, volume 210. UCL press London,

1996.

[14] John C. Gower and G.J.S Ross. Minimum spanning trees and single linkage cluster

analysis. Applied statistics, pages 54–64, 1969.

[15] Anthony T.S. Ho, Jun Shen, and Soon H. Tan. Robust digital image-in-image watermark-

ing algorithm using the fast hadamard transform. In International Symposium on Optical

Science and Technology, pages 76–85. International Society for Optics and Photonics,

2003.

18
http://thesis.library.caltech.edu/1340/

19
http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

20
https://urresearch.rochester.edu/.../&itemFileId=9760

21
http://www.researchgate.net/.../file/79e4150b86d38c7b8b.pdf

22
http://mansci.journal.informs.org/cgi/content/abstract/41/10/1639

July 2014 Page 36 / 38

http://thesis.library.caltech.edu/1340/
http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=6154&itemFileId=9760
http://www.researchgate.net/profile/Massimiliano_Giacomin/publication/228444376_A_fuzzy_extension_of_interval-based_constraint_networks/file/79e4150b86d38c7b8b.pdf
http://mansci.journal.informs.org/cgi/content/abstract/41/10/1639

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

[16] Uffe Kjærulff and Anders Madsen. Probabilistic networks—an introduction to Bayesian

networks and influence diagrams, May 2005. [Available online23].

[17] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[18] Frank R. Kschischang, Brendan J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[19] Harri Lähdesmäki and Ilya Shmulevich. Learning the structure of dynamic Bayesian net-

works from time series and steady state measurements. Machine Learing, 71(2–3):185–

217, 2008.

[20] David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, 2003.

[21] Todd K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Mag-

azine, 13(6):47–60, 1996.

[22] Kamel Mouhoub and Jia Liu. Probabilistic temporal network for numeric and symbolic

time information. IEEE Transactions on Systems, Man, and Cybernetics, pages 3399–

3404, October 12–15, 2008. [Available online24].

[23] Kevin Murphy. A brief introduction to graphical models and Bayesian networks, 1998.

[Available online25].

[24] Radu Stefan Niculescu, Tom M. Mitchell, and R. Bharat Rao. Bayesian network learning

with parameter constraints. Journal of Machine Learning Research, 7:1357–1383, July

2006. [Available online26].

[25] Angmin O, Jae Won Lee, Sung-Bae Parkl, and Byoung-Tak Zhangl. Stock trading by

modelling price trend with dynamic Bayesian networks. In Intelligent Data Engineering

and Automated Learning (IDEAL 2004), pages 794–799. Springer, Exeter, UK, August

25–27 2004.

[26] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, 1988. Revised 2nd printing.

[27] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence. Morgan Kaufmann, 1988.

[28] Alok K. Porwal, E. John M. Carranza, and Martin Hale. Bayesian network classifiers

for mineral potential mapping. Computers & Geosciences, 32(1):1–16, February 2006.

[Available online27].

[29] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational

intelligence, 9(3):268–299, 1993.

[30] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[31] Kevin S. Sancho. Cedar.Gdl Java Library User Manual. CEDAR Technical Report

Number 10, Université Claude Bernard Lyon 1, Villeurbanne, July 2014. [Available

online28].

23
http://www.cs.aau.dk/˜uk/papers/pgm-book-I-05.pdf

24
http://202.154.59.182/mfile/files/...Information.pdf

25
http://www.cs.ubc.ca/˜murphyk/Bayes/bnintro.html

26
http://jmlr.csail.mit.edu/papers/volume7/niculescu06a/niculescu06a.pdf

27
http://portal.acm.org/citation.cfm?id=1650536

28
http://cedar.liris.cnrs.fr/interns/KevinSancho/KevinSancho/ctr10.pdf

July 2014 Page 37 / 38

http://www.cs.aau.dk/~uk/papers/pgm-book-I-05.pdf
http://202.154.59.182/mfile/files/Information%20System/Knowledge-Based%20Intelligent%20System%20Advancements%3B%20Systemic%20and%20Cybernetic/Chapter%204%20Probabilistic%20Temporal%20Network%20for%20Numeric%20and%20Symbolic%20Time%20Information.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
http://jmlr.csail.mit.edu/papers/volume7/niculescu06a/niculescu06a.pdf
http://portal.acm.org/citation.cfm?id=1650536
http://cedar.liris.cnrs.fr/interns/KevinSancho/KevinSancho/ctr10.pdf

SANCHO, K.; A ÏT-KACI, H. The Cedar.Gdl Java Library

[32] Kevin S. Sancho. The Cedar.Gdl java library for the generalized distributive law. Mas-

ter’s thesis, Université Claude Bernard Lyon 1, Computer Science Department, Villeur-

banne, France, June 2014.

[33] Steven Schockaert, Martine De Cock, and Etienne E. Kerre. Fuzzifying allens temporal

interval relations. IEEE Transactions on Fuzzy Systems, 16(2):517–533, April 2008.

[Available online29].

[34] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[35] Geoffrey Zweig and Stuart Russell. Probabilistic modeling with Bayesian networks for

automatic speech recognition. Australian Journal of Intelligent Information Processing,

1999. [Available online30].

29
http://www.researchgate.net/publication/.../file/72e7e52126b9eeb7d8.pdf

30
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.9156

July 2014 Page 38 / 38

http://www.researchgate.net/publication/3336591_Fuzzifying_Allen's_Temporal_Interval_Relations/file/72e7e52126b9eeb7d8.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.9156

C E D A R

Technical Report Number 9

The Cedar.Gdl Java Library for the

Generalized Distributive Law

Kevin Sancho and Hassan Aı̈t-Kaci

July 2014

	Introduction
	Background
	Motivation
	Organization of contents

	Bayesian Networks
	Generalities
	The gdl in the literature

	The Generalized Distributive Law Algorithm
	The gdl
	Junction trees
	The message-passing algorithm

	The Cedar.Gdl Library Implementation
	The abstract core
	Classes implementing the gdl

	Original Contribution
	Constraint satisfaction with the gdl
	A modification of the gdl algorithm
	Modeling Allen's interval algebra with the gdl

	Implemented Instances of the Cedar.Gdl Library
	The Fast-Hadamard Transform
	Judea Pearl's belief propagation
	Constraint processing
	Constraint-satisfaction problems
	Constraint solving

	Conclusion
	Recapitulation
	Perspectives

	Correctness of the construction of Section 5.1
	Correctness of the gdl Modification of Section 5.2
	First method
	Second method

