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Abstract—We present a new version of CEDAR, a tax-
onomic reasoner for large-scale ontologies. This extended
version provides fuller support for TBox reasoning, checking
consistency, and retrieving instances. CEDAR is built on
top of the OSF formalism and based on an entirely new
architecture which includes several optimization techniques.
Using OSF graph structures, we define a bidirectional map-
ping between OSF structure and the Resource Description
Framework (RDF) allowing a translation from OSF queries
into SPARQL for retrieving instances. Experiments were
carried out using very large ontologies. The results achieved
by CEDAR were compared to those obtained by well-known
Semantic Web reasoners such as FaCT++, Pellet, HermiT,
TrOWL, and RacerPro. CEDAR performs on a par with
the best systems for concept classification and several orders
of magnitude more efficiently in terms of response time for
Boolean query-answering.

Keywords-Ontology Classification; Query Answering; Bi-
nary Encoding;

I. INTRODUCTION

Knowledge reasoning is deriving information that is
implied by the information already present in the knowl-
edge base. The latter consists of a TBox, which contains
intensional knowledge (schema) in the form of a termi-
nology describing properties of concepts, and an ABox
which contains extensional knowledge (data) and is used
to describe individuals.

Nowadays, several reasoning systems exist in the area
of the Semantic Web (SW). Most of these reasoners are
based on top of Description Logic (DL) and use a variation
of Tableau method as reasoning algorithms. The limitation
of these well known methods for large scale reasoning has
been documented heavily in the literature [17], [8].

The robustness and scalability of large-scale reasoning
have been addressed as part of the CEDAR project1 where
we proposed a new reasoner. It is built on top of the
OSF (Ordered-Sorted Features) formalism and based on
an entirely new architecture which incorporates several
optimization techniques [2], [6]. In its initial version,
the capability of the CEDAR reasoner was limited to
taxonomy reasoning. It beat all OWL reasoners by several
orders of magnitude in term of Boolean query answering.
In addition, its performance regarding classification was
comparable with reputedly efficient Semantic Web reason-
ers for large scale ontologies.

In order to tackle fuller challenges of the Semantic
Web, more expressiveness power is required. This new
work presents a more expressive reasoner adding no-
table improvements over the previous one. While the

1http://cedar.liris.cnrs.fr/

previous version could only support bare taxonomies,
this new version allows role-oriented Description Logic
concepts; namely, universal and existential role concepts.
We demonstrate that the performance improvement of the
previous reasoner over the state of the art is maintained
with this new expressive power.

In the new version, we add: (1) functional attributes
(called features); and, (2) set-valued features (to represent
DL roles). In addition to the reasoning services provided
by the previous version such as classification and cycle
detection, in its current version, CEDAR checks the con-
sistency of queries by normalizing a TBox. Finally, an
approach for retrieving instances is proposed for translat-
ing OSF queries into SPARQL. A TBox is then used to
optimize SPARQL queries using OSF reasoning.

Our experimental evaluation with the large-scale on-
tologies showed that the new version of CEDAR remains
the best of all existing reasoners in term of classification
and several orders-of-magnitude more efficient in terms of
response time for TBox reasoning. The obtained results
will be discussed in detail in this paper.

The remainder of this paper is organized as follows: we
start with a preliminary section to give an overview about
ψ-terms and OSF formalism. In Section III, we describe
the building blocks of CEDAR reasoner, namely; TBox
reasoning and query rewriting. In Section IV, we present
and discuss the experimental results. Finally, we present a
conclusions in Section V.

II. PRELIMINARY

A. Order-sorted feature constraints

In this section, we recall briefly ψ-terms that represent
the basis of a logic of record structures called OSF logic.
In [4], ψ-terms were proposed as flexible record structures
for logic programming. Indeed, ψ-terms can be seen as
a generalization of first-order. However, ψ-terms are of
wider interest (see [5] for more details). The easiest way
to describe a ψ-term is with the example shown in Figure
1. Here is a ψ-term that may be used to denote a generic
professor object structure:

X:professor(name ⇒ string, age ⇒ 30,
teachesAt ⇒ Y:university (location ⇒

string, established ⇒ 1988))

Figure 1. Example of sort and features definition using OSF syntax



Namely, a 30 year-old professor who has a name which
is of type string, and teaches at university. The university
has a location which is of type string, and established in
1988. This expression looks like a record structure. Like
a typical record, it has field names; i.e., the symbols on
the left of ⇒. We call these feature symbols. In contrast
with conventional records, however, ψ-terms can carry
more information. Namely, the fields are attached to sort2

symbols (e.g., professor, name, string, 30, etc). These sorts
may indifferently denote individual values (e.g., 30) or
sets of values (e.g., university, string). In fact, values are
assimilated to singleton-denoting sorts. Sorts are partially
ordered so as to reflect set inclusion; professor < employee
means that all professors are employees. More details
about OSF algebra and constraint-solving methods can
be found in [6].

B. OSF for the Semantic Web

RDF is a standard formal notation, proposed by World
Wide Web Consortium (W3C) to represent data on the
Web. An RDF dataset is a set of RDF triples and each
triple has a subject, a predicate and an object. An RDF
dataset forms a directed, labeled graph, where subjects
and objects are vertices and predicates are labels on the
directed edges.

Figure 1 shown in the previous section depicts that
the OSF formalism describes data that takes the form
of rooted labelled graphs. This enables transforming the
OSF into RDF, which rely on a set of transformation
rules that we have defined in this paper. Figure 2 shows
an example of an RDF graph corresponding to the ψ-term
shown by Figure 1.
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Figure 2. RDF Graph structure

III. CEDAR REASONER

CEDAR reasoner is an reasoner built on top of OSF
formalism. In its previous version [7], it was one of the
fastest reasoners in term of classification. For Boolean
query answering, CEDAR outperformed all OWL reason-
ers by several orders of magnitude. A such efficiency

2We use “sort” as a synonym of atomic “class” or “concept.” In other
words, sorts are partially ordered symbols.

comes from the combination of logic programming tech-
niques [6] and binary encoding [3]. In the previous ver-
sion, we were supporting only taxonomies. Indeed, in
order to tackle the challenges of the Semantic Web, a more
expressive power was required.

In its new version we shall present in this paper,
CEDAR has been extended by adding more constructs,
mainly features and aggregates. The specification of each
constructs is discussed in Section III-A where a com-
parison with Description Logic (DL) based constructs
must be provided. CEDAR whose architecture is shown
in Figure 3, is a complete reasoner which performs on
TBox and ABox levels. First of all, it starts with a
classification phase performed at the TBox level which
includes cycle detection, transitive closure performing and
features propagation. Then, the encoded TBox is saved
on the disk independently from the ABox and used for
query normalisation and consistency checking. Finally,
for retrieving instances, the query in normal form is
translated to SPARQL. In the Section III-B, we discuss
the classification and the query normalisation steps and
give an example for SPARQL query generation process
from ψ-term.
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Figure 3. CEDAR Reasoner building blocks

A. OSF vs DL
1) roles and features: OSF formalism deals with

functional features while DL is based on relational fea-
tures. A relational feature is a binary relation or, equiv-
alently, a set-valued function. In other words, a multi-
valued functional attribute may be aggregated into sets.
For instance, given a concept professor denoting a set of
professors, and a concept course denoting a set of courses.
Using DL semantics, we can define the role teaches with



domain professor and range course to denote the set of
all the pairs of professors and the courses they teach (i.e.,
[[teaches]]⊆ [[pro f essor]]× [[course]]).3

In OSF logic, a role is seen as a set-denoting function
[1]. This is crucial because OSF inference rules, based
on graph unification, rely on it in order to be correct [6]. It
is for this reason that we propose to represent a relational
role as a set-valued function. Indeed, for any sets S and
S
′
, a binary relation r ⊆ S × S

′
can be seen as a function

fr : S→P(S′), where P(S′) is the powerset of S
′
; i.e., the

set of all subsets of S
′
. Then,

∀x ∈ S, fr(x)
DEF
== { y ∈ S

′ | 〈x,y〉 ∈ y } (1)

However, for this to be possible, basic OSF logic must
be extended for a new syntactic construct denoting the
powerset of a concept. Given a concept c, we write a set-
of(c) the concept denoting the sets of subsets of [[c]], i.e.,

[[set-of(c)]] DEF
== P([[c]]). (2)

Considering, for example, the teaches role with domain
professor and range course, this can now be expressed as
the functional feature:

fteaches : pro f essor → set-of(course)

to denote the function:

[[ fteaches]] : [[pro f essor]]→P([[course]])

that associates to a professor the set of course he
teaches. More details about the semantic features and sub-
features can be found in [1].

2) Property Restrictions: The semantics of universal
and existential roles in a Description Logic language (such
as OWL) is given by:

[[∀R.C]]
DEF
== { x ∈ D | range(R)⊆ [[C]] }

[[∃R.C]]
DEF
== { x ∈ D | range(R)∩ [[C]] 6= /0 }

where range(R) DEF
== { y | ∃x 〈x,y〉 ∈ [[R]] }.

This, in OSF logic, corresponds respectively to:

[[∀R.C]]
DEF
==

⋃n
i=1 Ai s.t. Bi ⊆ [[C]]

[[∃R.C]]
DEF
==

⋃n
i=1 Ai s.t. Bi∩ [[C]] 6= /0

where:

[[R]] DEF
==

n⋃
i=1

Ai×Bi. (3)

This is still not conspicuously expressed in terms of
OSF Logic since one needs yet to know how this may
be defined using only functional features and the set-of

3We use the notation [[foo]] to denote the meaning of foo.

construct. In order to do so, we simply use the fact that a
role R defined as a binary relation such as Equation (3) is
equivalently definable using a set-valued functional feature
fR : Ai→P(Bi), whereby:

∀x ∈ Ai;∀y ∈ Bi; xRy ⇐⇒ y ∈ fR(x)

for i = 1, . . . ,n. So the two following definitions express
equivalently Description Logic’s universal and existential
role concepts, respectively, using only OSF primitives:

[[∀R.C]]
DEF
==

⋃n
i=1 Ai s.t. fR(Ai)⊆ [[set-of(C)]]

[[∃R.C]]
DEF
==

⋃n
i=1 Ai s.t. fR(Ai)∩ [[set-of(C)]] 6= /0

This is because:

fR(Ai)⊆P(Bi)⊆P([[C]]) = [[set-of(C)]].

B. Consistency check and query normalization

In our previous work [2], we proposed a binary en-
coding approach for representing taxonomies. An efficient
classification algorithm was also proposed for calculating
transitive closure.

Consistency check and query normalization are two
primordial steps which precede query execution. Prior to
this, a classification is performed in order to compute
all implicit subsumptions relationships and properties. An
efficient classification algorithm was proposed in our pre-
vious work [2]. In the current version, we have extended
the existing algorithm to perform features propagation.

Once classification is performed, the encoded ontology
is saved on the disk once and for all. It is used to check
queries constituency check and normalization. Indeed,
before executing a query, it is obvious that there is no
need to scan the ABox to retrieve instances if the query
is not consistent. Moreover, making a query in its normal
form allows to reduce the search space for instance
retrieval part. Table I shows the binary encoding of the
partial order set (poset) shown in the Figure 4. In [2], we
developed a binary encoding technique in that allows to
find the Maximum Lower Bound (MLB) for each Boolean
query. Thus, it can be used for ψ-terms normalization
since the features refer to the binary codes corresponding
to their domain. Figure 4 shows an example of an
ontology describing a set of academic employees and
organizations. The binary codes corresponding to the
taxonomy is shown by Table I. The features doResearch
and teachesAt have researcher and teacher as domain
respectively. In order to fully understand the process,
let us consider the query Q1 corresponding to the given
ψ-term:

person(doResearch ⇒ set-of(researchCenter),

teachesAt ⇒ set-of(university))

Q1 aims to retrieve the set of persons which are teaching
at university and doing research at researchCenter at
the same time. Indeed, we can clearly identify the sort
professor is the most specific one. In fact, the sort
corresponding to professor is the MLB of the root sort
(person) and the sorts which are the domains of the
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Figure 4. Example of taxonomy with features

Table I
BINARY ENCODING CORRESPONDING TO THE POSET SHOWN IN

FIGURE 4).

Sort Code
Top 11111111111
organization 01110000000
university 00100000000
research center 00010000000
person 00001111111
researcher 00000100111
teacher 00000010111
student 00000001000
professor 00000000111
associate professor 00000000010
full professor 00000000001

two features presents in Q1. Namely, researcher and
teacher. The MLB is the intersection (conjunction query)
of the binary code corresponding to person, teacher and
researcher which are represented by ”00001111111”,
”00000010111” and ”00000100111”. The result of that
intersection is ”00000000111” which corresponds to the
professor sort. Thus the normalized format is :

professor(doResearch ⇒ set-of(researchCenter),

teachesAt ⇒ set-of(university))

Following the same reasoning, the query Q2 given by
the ψ-term below returns a bottom value represented
by the code ”00000000000”. In this case, the query
is considered inconsistent with the TBox because the
doResearch is not a domain of student . Thus, there is no
need to search an instance for that query.

student(doResearch ⇒ set-of(researchCenter))

C. SPARQL query generation

Once a user query is simplified, a ψ-term is rewritten
in SPARQL format for efficient instance retrieval. Figure
5 shows the SPARQL query corresponding to the query
Q1 defined in the Section III-B while Figure 6 shows the
SPARQL query for Q1 in the normalized format.

One can clearly see that the SPARQL query in the
normalized format has less constraints than the first one.
Therefore, a smaller search space in the ABox part.

SELECT ?x
WHERE
{
?x rdf:type person.
?x doResearch ?y
?y rdf:type researchCenter.
?x teachesAt ?z
?z rdf:type university.
}

Figure 5. Generated SPARQL from Q1 without normalization

SELECT ?x
WHERE
{
?x rdf:type professor.
}

Figure 6. Generated SPARQL from Q1 with normalization

Especially, if a datatype indexing is already performed by
the triplestore. However, the query shown in the previous
example does not contain value. For this reason, we con-
sider that is not important to include features for SPARQL
query generation. This is obviously not the case where
features have values as a range. Essentially, in this case,
these features must be included in the SPARQL generated
query as shown in the example given by Figure 7 which
supposes that the name of the student is Dupont. Finally,
it is important to mention that for each type present in
the query, the binary code of must be sent with the query
to the triplestore. Indeed, the binary code identifies the
subtypes (subsorts) concerned by that query. For instance,
for the professor type, the binary code ”00000000111”
allows to identify the sorts associate professor and full
professor which are the subsorts of professor.

SELECT ?x
WHERE
{
?x rdf:type student.
?x name "Dupont"
}

Figure 7. Generated SPARQL from Q1 with normalization and values

IV. EXPERIMENTAL EVALUATION

Classification and query normalization algorithms have
been evaluated and compared with other SW reasoners,
under the exact same conditions, and over medium and
very large ontologies. The characteristics of each ontology
in term of number of sorts, and properties are shown in
Table II.

Except the taxonomy and properties, we removed all
non-necessary axioms. A comparative evaluation was con-
ducted to assess the performance of CEDAR over the
existing reasoners which have been implemented by using
OWL-API.4

4http://owlapi.sourceforge.net
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Figure 8. Classification time per reasoner

Table II
BENCHMARKS USED FOR EXPERIMENTS.

Ontology sorts properties
Amphibian [12] 6135 30 (generated)
Molecule Role [18] 9127 7
FMA [15] 83 283 77
CPO [10] 136 006 55
MESH [13] 286 380 32
NCBI [9] 903 617 30 (generated)

A. Classification

Figure 8 shows the comparative classification time
performances for each reasoner on each of the ontologies
described above. Note that the SnoRocket [11] reasoner
was excluded from this comparison because it does not
support the owl:allValuesFrom constraint.

From Figure 8, it can be seen that CEDAR is not
always the best, but it performs among the best reasoners.

Especially, for the large scale ontologies where it is
roughly ten time faster then TrOWL. This latter is the
worst in term of classification performances. This is due
to the fact that TrOWL applies syntactic and semantic
approximation from OWL2 to OWL-QL [14]. Contrary
to what has been stated in [16], FaCT++ performs better
than HermiT for all ontologies. This is perhaps due to the
limited number of axioms available for these ontologies
(taxonomy and roles). RacerPro and Pellet showed an
average performance compared to the rest of reasoners.

B. TBox Reasoning

In order to perform the evaluation of TBox reasoning
step which is necessary for query normalization, we have
randomly generated a set of queries, of the form:

X : S( f1 ⇒ S1, f2 ⇒ S2, f3 ⇒ Y : S3( f4 ⇒ S4, f5 ⇒ S5)
, ..., fn⇒ Sn) f or 10≤ n≤ 100.
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Figure 9. TBox query response time per reasoner

Figure 9 shows the query response time performances
in logarithmic scale where CEDAR is orders-of-magnitude
faster than other reasoners. It can be seen also that TrOWL
has a good performance comparing to other Description
Logic reasoners. According to our understanding, the poor
performance of TrOWL is it applies applies syntactic and
semantic approximation. Hermit, FaCT++, RacerPro and
Pellet show close results for medium scale ontologies.
However, FaCT++ could not provide an answer before 30
minutes for the large scale ontologies (FMA, CPO, MESH
and NCBI). For NCBI, which is the largest ontology,
Except for CEDAR, Pellet and TrOWL, all reasoner took
more then 30 minutes to provide an answer.

C. Discussion

The results reported in this section show that CEDAR
performs well for classification, TBox reasoning and query
answering. Indeed, in its first version, CEDAR taxonomic
reasoner showed a very good results in term of classifica-
tion. In the current version, we extended the taxonomy

classification algorithm by adding features propagation.
This extension was not largely expensive in terms of
time since it is based on already encoded taxonomy. For
each feature, the set of domain sorts is identified by the
binary code of the original sort for which this feature was
declared.

The performances we observed for the TBox reasoning
step (Section IV-B) is also related to the binary encoding
technique where CEDAR was orders-of-magnitude faster
than other reasoners. In the current version, we have
added features and aggregates for the CEDAR reasoner.
In addition to its name, features are identified by its
domain and range. Thereby, TBox reasoning phase uses
the binary code for query normalisation and consistency
verification process. In fact, query normalization is simply
a Boolean operation (conjunction) applied to the binary
code corresponding to domains sorts.

V. CONCLUSION

In this paper, we presented and implemented a new
version of CEDAR reasoner which was supporting only



taxonomies in its previous version. We added features and
aggregates and proved that CEDAR can express DL-based
relational roles.

A comparative evaluation was carried using several
highly reputed Semantic Web reasoners. Experiments
showed that CEDAR performs among the bests SW rea-
soners in terms of classification and several orders-of-
magnitude better in term of TBox reasoning.

As for further work, we are extending this work to
enable CEDAR to support more complex queries such
as disjunction or filtering. Since OSF is a powerful
description and reasoning language, the main part of the
work to be done is to adapt OSF to the Semantic Web.
We are also planing to develop our own triplestore that
would be highly efficient in retrieving instances.
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Département d’Informatique, Université Claude Bernard
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