
Journal of Intelligent Information Systems manuscript No.
(will be inserted by the editor)

An Efficient and Large-Scale Reasoning Method for the
Semantic Web

Samir Amir · Hassan Aı̈t-Kaci

Received: date / Accepted: date

Abstract We present an extended version of the CEDAR taxonomic reasoner for
large ontologies. This new version provides fuller support for TBox reasoning, check-
ing consistency, and retrieving instances. The CEDAR system is based upon the
OSF formalism. It is implemented on an entirely new architecture which includes
several optimization techniques. We define a bidirectional mapping between OSF
graph structures and the Resource Description Framework (RDF) allowing a transla-
tion from OSF queries into SPARQL for retrieving instances from an RDF triple-
store. We carried out comparative performance evaluation experiments using CEDAR
as well as well-known Semantic Web reasoners (such as FaCT++, Pellet, HermiT,
TrOWL, and RacerPro) on very large public ontologies. For the same queries on the
same ontologies, the results achieved by CEDAR were compared to those obtained
by all the other reasoners. The results of experiments show that CEDAR consistently
performs on a par with the fastest systems for concept classification, and several
orders of magnitude more efficiently in terms of response time for Boolean query-
answering over attributed concepts, as well as for ABox triplestore querying. The
latter result is irrespective of the triplestore management used because the CEDAR
reasoner uses its knowledge to optimize SPARQL queries before submitting them to
the triplestore.

1 Introduction

For a computing device, reasoning from knowledge consists in deriving information
implicit in a knowledge base. Using Semantic Web terms, this knowledge is made up
of a “Terminological Box” (TBox), which contains intensional information (schema)
in the form of terminological axioms describing properties of concepts, and an “As-

This work was done while the authors were affiliated with the LIRIS, Département Informatique,Université
Claude Bernard Lyon 1,Villeurbanne, France. This article is a corrected and expanded version of [15].
E-mail: samir.amir@pressinnov.com, hassanaitkaci@gmail.com

2 Samir Amir, Hassan Aı̈t-Kaci

sertional Box” (ABox) which contains extensional information (data) describing spe-
cific individuals that are instances of concepts described as TBox.

There are several software systems that support some form of formal reasoning
for Semantic Web (SW) applications (FaCT++,1 HermiT,2 Pellet,3 TrOWL,4 Racer-
Pro,5 SnoRocket,6 to name a few). Most of these reasoners are based on Description
Logic (DL) [16]. These reasoners use rules (or variations) of the Analytic Tableaux
method as their reasoning algorithms.7 However, as has been documented in the lit-
erature, these logics have shown their limitations in terms of their ease of use and,
more importantly, as the adequacy of their inference methods for reasoning over large
ontologies [19, 21, 34].

Robustness regarding scalability of reasoning is one of the issues being addressed
as part of the CEDAR project.8 Our approach proposes a different knowledge repre-
sentation formalism fromDL, and its reasoning method that is not based on Analytic
Tableaux. It is based upon the Ordered-Sorted Feature (OSF) constraint logic for-
malism using constrained labelled graph unification [2]. Its implementation relies on
an entirely new architecture which incorporates several optimization techniques ex-
ploiting the specificity of concept taxonomies [7]. In particular, it exploits the fact that
partially ordered concept taxonomies are central to all ontologies. In its initial ver-
sion, the capability of the CEDAR reasoner was limited to pure taxonomic reasoning
over unattributed concepts. Benchmarks showed that it outperformed all forecited
OWL reasoners by several orders of magnitude in term of Boolean query answering
on large ontologies, while its classification performance was on a par with the best
among those of the tested DL-based reasoners.

This paper describes a new version of the CEDAR reasoner containing non trivial
extensions over its previous capabilities as reported in [8] and demonstrated in [14].
More specifically, while the previous version of CEDAR could deal only with bare
taxonomies bearing no attributes and answer queries consisting of Boolean sort ex-
pressions, this new version of CEDAR supports the following extensions:

– reasoning over OSF structures not only with bare sorts, but also with order-
sorted set-valued functional features to represent DL roles (which are binary re-
lations);

– using OSF constraint normalization for reasoning to enable static optimization
of so-represented OSF queries;

– defining an RDF format forOSF structures and a two-way mapping between the
two representations;

– compiling normalized OSF queries into to SPARQL code for RDF triple in-
stance retrieval;

1 owl.cs.manchester.ac.uk/fact++/
2 www.hermit-reasoner.com/
3 clarkparsia.com/pellet/
4 trowl.eu/
5 www.racer-systems.com/products/racerpro/
6 research.ict.csiro.au/software/snorocket
7 en.wikipedia.org/wiki/Method of analytic tableaux
8 cedar.liris.cnrs.fr/

http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://www.trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket
http://en.wikipedia.org/wiki/Method_of_analytic_tableaux
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket
http://en.wikipedia.org/wiki/Method_of_analytic_tableaux
http://cedar.liris.cnrs.fr/

An Efficient and Large-Scale Reasoning Method for the Semantic Web 3

– using semantic OSF sort and attribute information for RDF type indexing for
efficient triplestore retrieval;

– confirming experimentally the efficient performance of CEDAR’s full OSF rea-
soning (TBox and ABox) when compared with state-of-the-art tableauDL provers.

This last point, in particular, was surprising to us since we expected the support of
role-based concepts to impede somehow CEDAR’s performance rather then when
just limited to bare taxonomic reasoning. Although we were hoping that CEDAR
remain comparatively competitive, we did not expect that it could keep the same effi-
ciency margin over the other provers that we observed for bare taxonomic reasoning.
Indeed, our experimental evaluation with the same large ontologies has confirmed
that the new version of CEDAR is still among the best of all existing reasoners in
term of classification and is several orders of magnitude more efficient in terms of
response time for Boolean TBox reasoning on attributed concepts, and can use se-
mantic information for efficient RDF triple indexing. CEDAR’s reasoning method
and the obtained results will be discussed in detail in this paper.

The remainder of this paper is organized as follows. In Section 2, we start with
preliminaries giving an overview of relevant notions of the OSF formalism, espe-
cially its data structure called ψ-term, used to represent (semi-structured) concepts
and objects. In Section 3, we describe the general architecture of the CEDAR rea-
soner for TBox reasoning and query compilation into SPARQL. In Section 4, we
present and discuss the experimental results. Finally, we recapitulate our contribution
and conclude in Section 5.

2 Preliminaries

2.1 Order-sorted feature constraints

In this section, we recall briefly ψ-terms that represent the basis of a logic of record
structures calledOSF Logic. The syntax ofψ-terms were proposed in [11] as flexible
record structures generalizing Prolog terms and how they are used in Logic Program-
ming, while enabling both more expressive and efficient queries using order-sorted
graph unification. Indeed, ψ-terms can be seen as a generalization of first-order terms.
The easiest way to describe a ψ-term is with an example, as shown in Figure 1.

X : professor (name ⇒ string
, age ⇒ 30
, school ⇒ Y : university (location ⇒ string

, established ⇒ 1988
)

)

Fig. 1: Example of a ψ-term pattern in OSF Logic syntax

4 Samir Amir, Hassan Aı̈t-Kaci

This is a ψ-term that could be used to depict a structure pattern for a “professor”
object. Namely, it specifies a professor object pattern with an age of value
30, with a name of sort string, and a school of sort university.9 This
university object pattern specifies two parts: a location, of sort string, and
established with value 1988. This expression looks like a record structure. Like
a typical record, it has field names; viz., the symbols on the left of ⇒ . We call these
feature symbols. In contrast with conventional records, however, ψ-terms can carry
more information. Namely, they can be nested, and the fields are attached to sort sym-
bols (e.g., professor, name, string, 30, etc.).10 These sorts may indifferently
denote individual values (e.g., 30) or types—i.e., sets of values (e.g., university,
string). In fact, values are assimilated to singleton-denoting types. Sorts are par-
tially ordered so as to reflect set inclusion; “professor is-a employee” means
that all instances of the sort professor are also instances of the sort employee.
Node reference tags (i.e., variables) such as X and Y are used in a ψ-term to indicate
structure sharing or to indicate the desired bindings in queries as in Logic Program-
ming [10]. These variables are capitalized as in Prolog. More details about OSF
algebra and constraint-solving can be found in [2, 12, 13].

2.2 OSF Logic for the Semantic Web

The Resource Description Framework (RDF) is a standard notation proposed by the
World Wide Web Consortium (W3C) to represent semi-structured schemas and data
on the Web. An RDF structure essentially represents (sets of) labelled graphs as col-
lections of the individual directed edges comprising them. These edges are called
RDF “triples” since such an edge is a triplet 〈subject,predicate,object〉.
The subject and object are nodes labelled by URIs, or literals also for objects; both
can also be unlabelled blank nodes. The predicate is a URI labelling the link from
a subject node to an object object. These triples are stored in repositories, possibly
distributed over the Internet, called “triplestores.” Therefore, an RDF dataset forms a
directed, possibly distributed, labelled graph, where subjects and objects are vertices
and predicates are labels on the directed edges.

As Figure 1 in the previous section depicts, the OSF formalism’s ψ-term syn-
tax describes data that takes the form of rooted labelled graphs. Since a ψ-term is a
notation for a labelled graph, an RDF notation for it can be readily derived. Such a
representation must account for differences between conventions of both notations.
The essential difference is that, whereas in a ψ-term all nodes are labelled uniformly
with sort symbols or values, RDF makes a difference between nodes that are labelled
with URIs, blank nodes, and value nodes, and arcs are labelled with URIs. Also,
rather than labelling typed nodes with their types, it uses an arc labelled with the spe-
cific URI rdf:type pointing to such a node (which is then a unique representation
for a type, and thus shared by all so-typed nodes). Hence, an RDF representation for
a ψ-term is obtained as a straightforward adaptation accounting for these differences.

9 We shall use “sort” and “type” interchangeably for such a symbol denoting a set of values.
10 We use “sort” as a synonym of atomic “class” or “concept.” In particular, sorts are partially ordered

sort symbols, where the ordering (“is-a”) denotes set inclusion.

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.w3.org/

An Efficient and Large-Scale Reasoning Method for the Semantic Web 5

This is done using a set of transformation rules given explicitly in [5]. Figure 2 shows
the RDF graph corresponding to the ψ-term of Figure 1.

Fig. 2: RDF representation for ψ-term of Figure 1

3 The CEDAR Reasoner

The CEDAR reasoner is an implementation of a limited form OSF Logic [2]. In
its previous version, CEDAR was demonstrated to be among the fastest reasoners
in term of classification [14]. Moreover, for Boolean query answering, CEDAR out-
performed all OWL reasoners by several orders of magnitude [7]. Such efficiency
can be explained essentially by order-sorted reasoning using binary encoding of tax-
onomies [9].

In the new version presented in this paper, the CEDAR reasoner has been ex-
tended by adding features, domain/range specifications for such features, and aggre-
gate sorts denoting collections of instances of specific sorts. The specification of each
constructs is discussed in Section 3.1 where a comparison with DL-based constructs
is provided. CEDAR’s architecture is shown in Figure 3. Therefore, this version is a
much more complete reasoner that can process both TBox and ABox information. It
starts with a classification phase performed on the TBox which includes cycle detec-
tion, transitive closure of the “is-a ” taxonomic ordering, and feature domain/range

6 Samir Amir, Hassan Aı̈t-Kaci

Fig. 3: The CEDAR reasoner’s general architecture

constraint propagation down the taxonomy, and normalization of all such informa-
tion [5]. Then, the encoded TBox is saved on secondary storage independently of any
ABox. It is then used for query normalization and consistency checking. Finally, for
retrieving instances, normalized queries are translated into SPARQL form that can
be optimized using TBox knowledge. In Section 3.2, we discuss the classification
and the query normalization steps and give an example of SPARQL query generation
process from ψ-term query forms.

3.1 Expressing DL constructs in OSF Logic

3.1.1 Roles as features

The OSF formalism uses functional features while DL uses relational roles. A role
is a binary relation. As such, it can be equivalently defined as a set-valued function. In
other words, the multi values spanned by a role may be aggregated into sets. For in-
stance, given a concept professor denoting a set of professors, and a concept “course”
denoting a set of courses. UsingDL semantics, we can define the role “teaches” with

An Efficient and Large-Scale Reasoning Method for the Semantic Web 7

domain “professor” and range “course” to denote the set of all the pairs of professors
and the courses they teach; i.e., JteachesK ⊆ JprofessorK× JcourseK).11

InOSF Logic, the fact that a feature symbol denotes a function is crucial because
OSF inference rules, based on graph unification, rely on it in order to be correct [13].
It is for this reason that we propose to represent a relational role as a set-valued
function. Indeed, for any sets S and S′, a binary relation r ⊆ S × S′ can as well be
seen as a set-valued function fr : S → P(S′), where P(S′) is the powerset of S′,
i.e., the set of all subsets of S′. Formally,

∀x ∈ S, fr(x)
def
= { y ∈ S′ | 〈x, y〉 ∈ r }.

In order to accommodate set-valued features, basic OSF Logic is extended with
a new syntactic construct denoting the powerset of a concept. Given a concept c, we
write a set-of(c) the concept denoting the sets of subsets of JcK; i.e.,

Jset-of(c)K def
= P(JcK).

Considering the role “teaches” with domain “professor” and range “course,” for
example, it can also be expressed as the functional feature:

fteaches : professor→ set-of(course)

to denote the function:

JfteachesK : JprofessorK→ P(JcourseK)

that associates to a professor the set of course s/he teaches. More details on the se-
mantics of set-valued features and can be found in [6].

3.1.2 Role-based concepts

In Description Logic, in addition to concept names comprising a taxonomy, one can
also express two kinds of nameless concepts involving roles: (1) universal role con-
cepts; and, (2) existential role concepts. Formally, given a role R and a concept C,
this semantics of universal and existential roles is expressed in DL as, respectively:

J∀R.CK def
= { x ∈ D | {y ∈ D | 〈x, y〉 ∈ JRK} ⊆ JCK }

J∃R.CK def
= { x ∈ D | {y ∈ D | 〈x, y〉 ∈ JRK} ∩ JCK 6= ∅ }

where D is the domain of interpretation of all concept instances (i.e., the universe
of discourse). For example, the universal-role concept ∀teaches.cs-course will de-
note the set of professors that teach only computer-science courses. Similarly, the
existential-role concept ∃teaches.cs-course will denote the set of professors that teach
at least one computer-science course.

11 The notation J. . .K denotes the formal meaning of whatever “. . . ” is.

8 Samir Amir, Hassan Aı̈t-Kaci

Using set-valued functional features instead of roles, these are expressed inOSF
Logic as, respectively:

J∀R.CK def
= { x ∈ D | fR(x) ⊆ JCK }

J∃R.CK def
= { x ∈ D | fR(x) ∩ JCK 6= ∅ }.

The interested reader will find a more detailed discussion of how the DL and
OSF formalisms are related in [2], and a concise summary of the essential points
in [3].12

3.2 TBox consistency check and query normalization

In previous work, we showed how bit-vector encoding of partially ordered sorts
boosts the performance of taxonomic reasoning [7]. This was done using an effi-
cient classification algorithm calculating the transitive closure of the partial order on
sorts [9]. As demonstrated in [14], these codes yield extremely fast evaluation of
Boolean concept expressions finding the Maximal Lower Bounds (MLBs) of all con-
cepts subsumed by such expressions. In this paper, we illustrate how they can also
be used for efficient ψ-term normalization since the features refer to the binary codes
corresponding to their domains and ranges.

3.2.1 Taxonomy consistency normalization

The idea is simple: given a taxonomy defining a partial order on sorts that have been
encoded as bit-vectors, a feature’s f domain/range declaration of the form f : d→ r
is propagated to a subsort s of d as follows:

– if there is no declaration for f for the sort s, then we simply install the declaration
f : s→ r for the sort s, and iterate the process for subsorts of s;

– if there is already a declaration for f : s → r′ for the sort s, then we normalize
it to be f : s → r ∧ r′, where r ∧ r′ is the (binary code of) the conjunction of
(the binary codes of) the sorts r and r′. If this code is all 0’s, this means that the
feature declaration is inconsistent, and so is the taxonomy.

Clearly, this process always terminates: it is in fact linear in the number of declared
features and the number of subsorts of their domains. If no inconsistency is found, the
resulting taxonomy is then normalized into a consistent set of feature declarations.

For example, assume that the sort ordering on sorts is such that:

researchScientist is-a researcher
researchScientist is-a scientist
scientificResearch is-a research
scientificResearch is-a science

12 See https://www.youtube.com/watch?v=8uOgG6CJ8iY for a short slide presentation on
this very question.

https://www.youtube.com/watch?v=8uOgG6CJ8iY

An Efficient and Large-Scale Reasoning Method for the Semantic Web 9

and that we have the feature declarations:

interestedIn : researcher→ research
interestedIn : scientist→ science

Feature propagation brings these declarations for feature interestedIn from the
sorts researcher and scientist down to the sort researchScientist,
for which they are normalized into the single declaration:

interestedIn : researchScientist→ scientificResearch.

This normalization results in a consistent taxonomy by coercing the range sort of the
feature declaration interestedIn on the domain sort researchScientist
to the most general sort that is compatible with the declarations of this feature inher-
ited from its supersorts. If there had been no compatible range sorts for this feature,
this normalization would have reported an inconsistent feature declaration. The nor-
malization rules for taxonomy consistency check are described more formally in [5],
along with pseudo-code.

3.2.2 Query normalization for efficient ABox instance retrieval

Checking the consistency of a taxonomy and normalization of queries are two pri-
mordial steps that must be performed prior to submitting queries for execution—i.e.,
before actual ABox instance retrieval. Ensuring taxonomy consistency is a process
called classification. It computes all implicit subsumptions relationships and prop-
erties. An efficient classification algorithm was proposed in our previous work [7].
As explained above, the current version extends the classification algorithm to check
also feature domain/range consistent by propagating feature declarations down the
taxonomy and normalizing these declarations to be consistent, or reporting inconsis-
tencies. A consistent normalized taxonomy (or TBox) can then be used to optimize
ABox instance retrieval by normalizing queries. Here is how this is done.

Once classification is performed, the encoded ontology is saved on disk once and
for all. There are three important advantages for proceeding so:

1. a saved classified ontology can be reused without the need to be reclassified for
every new query sessions;

2. checking a query’s consistency with respect to a classified ontology before exe-
cuting it prevents useless scanning of the ABox for instance retrieval if the query
is not consistent; and,

3. normalizing a query with respect to a classified ontology drastically reduces the
ABox retrieval search space focusing only on relevant instances.

Let us illustrate this on an example. Figure 4 shows an ontology describing aca-
demic workers and institutions. Besides the concept taxonomy, it shows two set-
valued feature declarations:

teachesAt : teacher→ set-of(university)

and:

worksAt : researcher→ set-of(researchCenter)

10 Samir Amir, Hassan Aı̈t-Kaci

Fig. 4: Example of a taxonomy with attribute features

Sort Code
top 11111111111
institution 01110000000
university 00100000000
researchCenter 00010000000
person 00001111111
researcher 00000100111
teacher 00000010111
student 00000001000
professor 00000000111
associateProfessor 00000000010
fullProfessor 00000000001

Table 1: Binary codes for the poset shown in Figure 4

The binary codes corresponding to the taxonomy of Figure 4 are shown in Table 1.

In order to understand the process, let us consider the query Q1 corresponding to
the ψ-term:

X : person (worksAt ⇒ set-of(researchCenter)
, teachesAt ⇒ set-of(university)).

An Efficient and Large-Scale Reasoning Method for the Semantic Web 11

This query aims to retrieve all instances of persons teaching at a university, and work-
ing at a research center as well. Rather than submitting this query as is for retrieving
instances from the ABox that verify it, we first proceed to normalize it to be consis-
tent with the knowledge in the TBox. Doing so, we identify the sort professor
as being the most specific one. In fact, the sort corresponding to professor is
the MLB of the root sort (person) and the sorts which are the domains of the two
features presents in Q1; namely, researcher and teacher. The MLB is the in-
tersection (conjunction) of the binary code corresponding to person, teacher
and researcher which are represented by 00001111111, 00000010111, and
00000100111. The result of that intersection is 00000000111, which corre-
sponds to the sort professor. Thus, the normalized query is:

X : professor (worksAt ⇒ set-of(researchCenter)
, teachesAt ⇒ set-of(university)).

Following the same reasoning, normalizing the query Q2 expressed as the ψ-term:

X : student (worksAt ⇒ set-of(researchCenter))

yields the inconsistent (i.e., empty) sort represented by the code 00000000000.
In this case, the query is considered inconsistent with the TBox because the sort
student has no subsort that is compatible with a known domain for the feature
worksAt. Thus, there is no need to search the ABox for any instance of this query.

3.3 SPARQL query generation

Once a query expressed as a ψ-term is normalized with respect to a TBox and found
consistent, it is compiled into SPARQL for efficient instance retrieval. To appreciate
the advantage of normalizing a query with respect to a TBox before submitting it for
evaluation explained in Section 3.2, it is informative to to see an example.

Figure 5 shows the SPARQL query corresponding to the query Q1 without prior
normalization, and Figure 6 shows the SPARQL query for the same query after nor-
malization.

SELECT ?x
WHERE

{
?x rdf:type person.
?x worksAt ?y.
?y rdf:type researchCenter.
?x teachesAt ?z.
?z rdf:type university.

}

Fig. 5: Generated SPARQL from Q1 without normalization

12 Samir Amir, Hassan Aı̈t-Kaci

SELECT ?x
WHERE

{
?x rdf:type professor.

}

Fig. 6: Generated SPARQL from Q1 with normalization

One can clearly see that the SPARQL query in the normalized format has many
less constraints than the first one. Not only could the rdf:type of query variable
?x be narrowed to the more specific sort professor, but also the domain/range
feature constraints could be eliminated altogether! This is because they were already
verified to be consistent by normalization, and since all instances in the ABox are
necessarily consistent with the knowledge of the TBox (in the same manner as data
in a database obey its schema), it can be safely assumed that all relevant instances of
sort professor in the ABox already abide by those feature constraints! This not
only reduces the search space in the ABox, but also greatly improves query evaluation
by removing useless costly joins. In addition, evaluating this query can be made even
more efficient if a datatype indexing is already performed by the triplestore.

Note that it is not always possible to eliminate feature constraints from a gener-
ated SPARQL query. This is the case in particular when a feature constraint in a query
specifies a value as opposed to a sort as the range of a feature. In that case, these fea-
tures must be included in the generated SPARQL query. Consider for example the
query Q3 expressed as:

X : person (school ⇒ "Stanford")

(assuming feature declaration school : student → string). Then, the gener-
ated SPARQL query shown in Figure 7 does normalize the sort person to student,
but it must keep the feature name with specific value "Stanford".

SELECT ?x
WHERE

{
?x rdf:type student.
?x school "Stanford"

}

Fig. 7: Generated SPARQL query Q3 with normalization and valued feature

Finally, it is important to mention that for each sort occurring in the query, sending
its binary code along with the query to the triplestore allows efficient filtering of
eligible answer instances. For example, for the sort professor, the binary code

An Efficient and Large-Scale Reasoning Method for the Semantic Web 13

00000000111 allows to filter instances of the sorts associateProfessor and
fullProfessor as eligible answers since their sorts are subsorts of professor.

4 Experimental Evaluation

A comparative evaluation was conducted to assess the performance of CEDAR over
reasoners based on the OWL API.13 We evaluated our classification and query nor-
malization algorithms comparing their performance with those of these reasoners,
under the exact same conditions, over medium-size to very large ontologies. The
characteristics in term of number of sorts and properties of the ontologies used in
our experiments are shown in Table 2. We removed all axioms besides the taxonomy
itself and properties attached to its concepts. Since Amphibian and NCBI are bare
taxonomies, the properties for these two ontologies were generated.

Ontology Reference # of Sorts # of Properties
Amphibian [27] 6,135 30
MoleculeRole [35] 9,127 7
FMA [31] 83,283 77
CPO [23] 136,006 55
MeSH [29] 286,380 32
NCBI [20] 903,617 30

Table 2: Ontologies used as benchmarks in our experiments

The ontologies described in Table 2 can only be used for TBox reasoning (classi-
fication and query normalization) because they do not contain instances. Therefore,
in order to evaluate our instance-retrieval approach (explained in Section 4.3), we
used the Lehigh University Benchmark suite (LUBM) [22]. The LUBM benchmark’s
triple generator uses a predefined ontology as a set of constraints (containing around
43 classes and 31 properties). In order to perform an evaluation using universal and
existential roles, we created a new version of LUBM ontology by replacing some
existential roles with universal roles.

4.1 Classification

Figure 8 shows the comparative classification time performances for each reasoner
on each of the ontologies described above. Note that the SnoRocket reasoner was ex-
cluded from this comparison because it does not support the owl:allValuesFrom
constraint [26].

From Figure 8, it can be seen that for classification CEDAR does not always
achieve the best performance, although in five cases out six, it consistently ranks
among the three reasoners that do. This can be observed particularly on the largest

13 http://owlapi.sourceforge.net

http://swat.cse.lehigh.edu/projects/lubm/
http://owlapi.sourceforge.net

14 Samir Amir, Hassan Aı̈t-Kaci

tested ontologies where it is roughly ten time faster than TrOWL. This latter rea-
soner’s classification performance is incidentally always the worst of the tested sys-
tems. We suppose that this must be due to the fact that TrOWL preprocesses on-
tologies by first compiling them from OWL2 to OWL-QL [30]. As for FaCT++, it
systematically outperforms HermiT on all our tested ontologies, contrary to what is
claimed in [32]. This is perhaps due to the relatively limited number of role axioms
available in these ontologies. Finally, RacerPro and Pellet consistently rank as aver-
age performers compared to the rest of reasoners.

Fig. 8: Classification time for all reasoners per ontology

An Efficient and Large-Scale Reasoning Method for the Semantic Web 15

4.2 TBox reasoning

Fig. 9: TBox query response time for all reasoners per ontology

In order to perform the evaluation of the TBox reasoning step which is necessary
for query normalization, we have randomly generated a set of queries, of the form:

X : s (f1 ⇒ s1, . . . ,fn ⇒ sn) for 10 ≤ n ≤ 100.

Figure 9 shows query-response time performance using logarithmic scale. One
can see clearly that the CEDAR reasoner is systematically orders-of-magnitude faster
than all the other reasoners. It can be seen also that TrOWL has a much better perfor-
mance compared to those of the other Description Logic reasoners. According to our

16 Samir Amir, Hassan Aı̈t-Kaci

Ontology FaCT++ HermiT TrOWL Pellet RacerPro CEDAR
Amphibian 100.00% 75.74% 3.96% 83.91% 61.61% 0.0864%
MoleculeRole 100.00% 81.61% 4.90% 31.29% 30.90% 0.0165%
FMA 40.19% 91.00% 14.76% 100.00% 15.79% 0.0073%
CPO 91.27% 100.00% 7.78% 94.02% 9.59% 0.0075%
MeSH 87.83% 9.35% 100.00% 0.0017%
NCBI 7.31% 100.00% 0.0012%

Table 3: Relative normalized average percentiles of performance times for TBox queries

understanding, this could be explained by the fact that its preprocessing from OWL2
to OWL-QL mentioned before is not guaranteed to be faithful in that it applies some
syntactic and semantic approximations [30]. Hermit, FaCT++, RacerPro and Pellet
show very similar performances on medium-size ontologies. However, FaCT++ could
not provide an answer before 30 minutes for large ontologies (FMA, CPO, MESH
and NCBI). For NCBI, which is the largest ontology, all reasoners except CEDAR,
Pellet, and TrOWL, exceeded 30 minutes.

Although the graphs in Figure 9 speak for themselves, it is informative to get an
appreciation of the relative performances for query answering of all the reasoners
we have tested. Table 3 sums up the facts displayed in the graphs of Figure 9 by
taking the average time over all query sizes (viz., from 10 to 100 concepts), giving
the maximum of these averages for all reasoners the value 100%, and showing all the
other averages as percent values. Empty cells mean that the reasoner was never able
to provide an answer within our time-out limit (which, again, was set to 30 minutes).
Note that, as shown in the (log-scaled) graphs, the larger the size of the ontology, the
more notable the difference of performances.

4.3 ABox query answering

Query answering requires both TBox reasoning and ABox instance retrieval. We se-
lected a set of available tools for the evaluation of this step. We compared CEDAR
with all OWL-API reasoners, as well as with other reasoners such as SPARQL-
DL [33],14 and Jena.15 We conducted our test of ABox querying on the following
four queries we defined according to the LUBM ontology:

X : person (takesCourse ⇒ set-of(course));

X : person (worksFor ⇒ set-of(organization)
, headOf ⇒ set-of(department));

X : employee (worksFor ⇒ set-of(institute)
, teachingAssistant ⇒ set-of(course));

X : student (takesCourse ⇒ set-of(course)
, advisor ⇒ set-of(faculty)
, teacherOf ⇒ set-of(course)).

14 http://www.derivo.de/en/resources/sparql-dl-api.html
15 http://jena.apache.org/

http://www.derivo.de/en/resources/sparql-dl-api.html
http://jena.apache.org/

An Efficient and Large-Scale Reasoning Method for the Semantic Web 17

Figures 10–13 show query-answering times per query and reasoner. Each figure
shows the performance of the reasoners for ABox querying on a medium-size dataset
up to 100 thousand triples (the graphs on the left), and on a large dataset up to 5
million triples (the graphs on the right). Due to the significant difference in response
time between HermiT and the rest of the SW reasoners, the graphs corresponding
to the medium-size dataset (on the left-hand side) use a logarithmic scale. For the
large-size dataset, none of the OWL-API reasoners could handle more that 1 million
triples. Only three could hold the load up to 5 million triples: (1) Jena with its own
reasoner; (2) Jena with the CEDAR reasoner; and (3) CEDAR with its own instance
retrieval method using a type-indexed triplestore, as explained in Section 4.4.

Fig. 10: Response time for the first ABox query

Fig. 11: Response time for the second ABox query

These figures show that HermiT has the poorest performance for ABox query
answering, even among OWL-API reasoners. It took more than 60 seconds for a
dataset whose size is 10 thousand of triples and could not provide an answer before
a time-out period that we set to 30 minutes. TrOWL is the best among OWL-API
reasoners in term of performance on the medium-size dataset. However, it failed at
the classification step for the large ontologies where the cost in term of memory was

18 Samir Amir, Hassan Aı̈t-Kaci

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Sparql-DL (derivo)

TrOWL (OWL API)

Jena Reasoner

CEDAR (Jena)

HermiT (OWL API)

Pellet (Jena)

log (time)

number of triples

-4

-3

-2

-1

0

1

0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M 5M

Jena reasoner

CEDAR (Jena)

CEDAR (type indexing)

log (time (s))

number of triples

Fig. 12: Response time for the third ABox query

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Sparql-DL (derivo)

TrOWL (OWL API)

Jena Reasoner

CEDAR (Jena)

HermiT (OWL API)

Pellet (Jena)

log (time)

number of triples

-4

-3

-2

-1

0

1

0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M 5M

Jena reasoner

CEDAR (Jena)

CEDAR (type indexing)

log (time (s))

number of triples

Fig. 13: Response time for the fourth ABox query

around 15Gb for only 0.5 million of triples. For the same ontologies, other OWL-API
reasoners (FaCT++ and Pellet) failed to give an answer. SPARQL-DL also showed
its limits for the large dataset. Such a result was not surprising since that SPARQL-
DL engine also uses the OWL-API; hence its behavior similar to the other OWL-API
reasoners.

Pellet coupled with Jena, on the other hand, showed relatively good performance,
Jena for the large dataset, its performances are close to those of Jena internal reasoner.
This may be due to the fact that Pellet is implemented differently when used with
Jena. Jena with its own reasoner is the best among all tested, but never outperforms
the CEDAR reasoner.

Finally, as clearly illustrated in Figures 10–13, the CEDAR reasoner and SPARQL
query generator, using Jena as SPARQL query evaluator, systematically achieves the
best performances of all the systems tested in term of query answering time. This is
true even without indexing the set of triples (i.e., by fully relying on Jena’s triplestore
manager). However, just to have an idea, we implemented our own method taking
advantage of encoded sorts to preprocess the set of triples to be queried into a type-
indexed partitioned set. As shown in the figures, the results were simply staggeringly
better. The comparative normalized relative percentiles for the right-hand side graphs
are shown in Table 4. We did not report the OWL-API’s performance in these per-
centiles since the difference would simply be too great.

An Efficient and Large-Scale Reasoning Method for the Semantic Web 19

ABox Query Jena Reasoner CEDAR Reasoner CEDAR Reasoner with type indexing

Query 1 100% 78.8% 0.042%
Query 2 100% 93.1% 0.019%
Query 3 100% 88.4% 0.022%
Query 4 100% 90.5% 0.035%

Table 4: Relative normalized average percentiles of performance times for ABox queries

4.4 Discussion

The results reported in this document show that CEDAR performs well for classifi-
cation, and very well for TBox reasoning and query answering. In its first version,
the CEDAR taxonomic reasoner already showed very good performance in terms of
classification. In the current version extending taxonomic reasoning to include func-
tional and relational attributes, classification also propagates feature domain/range
declarations down the taxonomy and normalizes them to be consistent. As demon-
strated, this new capability turns out to be not so expensive in terms of time since it
takes advantage of the fact that this is performed on the taxonomy that has already
been encoded. For each feature, its domain sorts are identified by the binary codes
of the original sort for which this feature was declared as well as its subsorts. Static
propagation and normalization is performed once an for all and no lookup is ever
needed thereafter for a feature’s domain and range.

The good performances we observed for the TBox reasoning step (Section 4.2)
is also related to the binary encoding technique whereby CEDAR was orders-of-
magnitude faster than the other reasoners we tested. In the current version, we have
added features and aggregates for the CEDAR reasoner. In addition to its name, a
feature is identified by its domain and range. By this token, the TBox reasoning phase
uses the binary code for query normalization and consistency verification process. In
fact, query normalization is simply feature type inference consisting in a Boolean
operation (conjunction) of the binary codes corresponding to features’ domain/range
sorts.

The results reported in Section 4.3 show that all reasoners based on the OWL-API
fail on the large dataset we used in our tests. This was not surprising to us because
this confirmed similar evaluations done by others (e.g., [34]). We are convinced that
TBox-based query normalization enabled by our attributed-taxonomy classification
technique is the key boosting the efficiency of our reasoner. The generated SPARQL
queries are thus optimized using reasoning based on the knowledge represented in the
TBox, itself made efficient by feature propagation and normalization. This reasoning
enables generating queries so that a SPARQL engine executing them can sidestep
generic constraint-checking which is done statically once and for all, narrowing the
search to relevant triples only. This is in contrast with the fact that other reasoners,
even when coupled with an efficient SPARQL engine like Jena, actually use their de-
ductive power to generate more facts from already existing triples, thereby increasing
the number of facts to retrieve from the triplestore before filtering the relevant ones.
Finally, CEDAR performs its TBox normalization statically and saves it on disk once

20 Samir Amir, Hassan Aı̈t-Kaci

and for all. This is an ideal solution for its use in a dynamic environment where the
ABox changes regularly while the TBox does not.

While there are many triplestores available in the world, we restricted our study
to those using the OWL API, SPARQL-DL, and Jena. This is because our goal was
not to evaluate triplestores, but how existing Semantic Web reasoners perform with
triplestores. In fact, these triplestores do not vary much in the TBox reasoners they
rely on, but they do when it comes to optimizing queries by applying several tech-
niques such as indexing, hashing, etc., . . . , irrespectively of the reasoners using them.
For our instance retrieval tests, we used Jena as the SPARQL engine to use with the
CEDAR reasoner since it is widely used by many other Semantic Web reasoners.

In order to explore the magnitude of improvement yet possible if the underlying
triplestore had the means to index its sets of triples taking advantage of the taxo-
nomic knowledge available at query-generation time, we experimented with our own
method for indexing a set of triples to be queried using sort encoding. Thus, we imple-
mented a simple type-indexing scheme taking advantage of the bit-vector encoding.
We organized the ABox in memory so that triples of a given sort (“root” triples of
this sort) are all stored contiguously. Then, in the taxonomy array containing each
sort and its properties (such as name, binary code, etc.), we added two integer fields:
one indicating the ABox index of the first triple of this sort, and the other indicat-
ing the last such index. In this way, it is possible to iterate only over those triples in
the ABox sorted with subsorts of a given query simply by using the binary code of
the query’s root sort. This is possible since its “1” bits’ positions correspond to the
indices of its subsorts in the taxonomy array [7]. Thus, the relevant ranges of triples
stored at these indices in this array are readily accessible. Such an indexing scheme
is illustrated in Figure 14.

Fig. 14: ABox indexing scheme using sort encoding

An Efficient and Large-Scale Reasoning Method for the Semantic Web 21

Of course, when used, indexing is performed once and for all as an offline step,
to be reused on the same ABox as often as needed. By using such a scheme, the
results we obtained in this experiment for the same queries on the same (indexed)
set of triples showed that performance of query processing could be further divided
by a factor in the order of thousands. This indicates that building type-indexing us-
ing encoded sorts in an actual triplestore management is likely to provide similar
results—even if lessened to a factor of tens for complex queries.

As a last note, and to address potential questions that could have come to the
reader with a background in database management, the results reported here are fully
congruent with what has been demonstrated by DB researchers in the early 1990’s us-
ing sorted relational logic for improved data management (e.g., Telos [25], Concept-
Base [28], the Software Information Base [18], or LIFE [24]). Our work, however,
deals with Semantic Web knowledge management, not just (even semi-structured)
data. As pointed out in [4],16 some even made use of the same ideas of bitmap encod-
ing techniques developed earlier (i.e., [9], and [1]). In fact, it is all the more surprising
that sorted information technology has been so disregarded for Semantic Web pro-
cessing byDL reasoners. We thus hope that our contribution will entice the Semantic
Web community to pay heed to sorted constraint logic as an effective means of opti-
mization for knowledge-base processing.

5 Conclusion

In this document, we have presented an implementation of a new version of the
CEDAR Semantic Web reasoner supporting reasoning with taxonomies with sim-
ple and set-valued functional features, the latter expressing relational roles as used
in Description Logic. A comparative evaluation of CEDAR was carried out along
with several of the most reputed Semantic Web reasoners. Experiments showed that
CEDAR’s performance is consistently among the best SW reasoners in terms of
classification, and several orders-of-magnitude better in terms of TBox reasoning.
CEDAR exploits the fact that its underlying logic, Order-Sorted Feature Logic [13],
is based on labelled graph structures—called ψ-terms—that can be straightforwardly
mapped into RDF format. We illustrated how to transform ψ-term queries that are
normalized using a TBox knowledge, itself normalized, into optimized SPARQL
queries. This TBox normalization ensures consistency of the TBox knowledge, which
in turn can be used to normalize the generated SPARQL queries to reduce the search
space of the SPARQL engine.

As for the future, we are extending this work to enable CEDAR to support more
complex ontologies and queries such as disjunction or filtering. Since full OSF
Logic is a powerful knowledge description and reasoning formalism that goes beyond
simple conjunctive queries, the main part of the work to be done is to adapt its opera-
tional semantics to the context of Semantic Web. We are also working on developing
our own distributed triplestore management system for efficient instance retrieval and
advanced indexing methods from secondary-storage or networked data [17].

16 Op. cit., Section 6: Discussion, p. 7.

22 Samir Amir, Hassan Aı̈t-Kaci

Acknowledgements: The authors wish to thank Mohand-Saı̈d Hacid and Rafiqul
Haque, as well as the two anonymous reviewers, for their constructive feedback.

Funding: This work was carried out as part of the CEDAR Project (Constraint Event-
Driven Automated Reasoning) under the Agence Nationale de la Recherche (ANR)
Chair of Excellence grant No ANR-12-CHEX-0003-01 at the Université Claude
Bernard Lyon 1 (UCBL).

Conflict of Interest Statement: The authors declare that they have no conflict of
interest.

References

1. Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Jagadish. Efficient management
of transitive relationships in large data and knowledge bases. In James Clifford, Bruce G. Lindsay, and
David Maier, editors, Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 253–262, Portland, Oregon, May/June 1989. ACM, SIGMOD Record 18(2). [Available
online17].

2. Hassan Aı̈t-Kaci. Data models as constraint systems—a key to the Semantic Web. Constraint Pro-
cessing Letters, 1:33–88, November 2007. [Available online18].

3. Hassan Aı̈t-Kaci. Description logic vs. order-sorted feature logic. In Diego Calvanese, Enrico Fran-
coni, Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Sergio Tessaris,
editors, International Workshop on Description Logics (DL’07), pages 147–154, Brixen-Bressanone
(Italy), June 2007. CEUR Workshop Proceedings. [Available online19].

4. Hassan Aı̈t-Kaci. Efficient encoding of very large partial orders—a specification. CEDAR Technical
Report Number 4, CEDAR Project, LIRIS, Département d’Informatique, Université Claude Bernard
Lyon 1, Villeurbanne, France, September 2013. [Available online20].

5. Hassan Aı̈t-Kaci. HO•O•T: A language for expressing and querying hierarchical ontologies, ob-
jects, and types—a specification. CEDAR Technical Report Number 16, CEDAR Project, LIRIS,
Département d’Informatique, Université Claude Bernard Lyon 1, Villeurbanne, France, December
2014. [Available online21].

6. Hassan Aı̈t-Kaci. A set-complete domain construction for order-sorted set-valued features. CEDAR
Technical Report Number 11, CEDAR Project, LIRIS, Département d’Informatique, Université
Claude Bernard Lyon 1, Villeurbanne, France, October 2014. [Available online22].

7. Hassan Aı̈t-Kaci and Samir Amir. Classifying and querying very large taxonomies—a comparative
study to the best of our knowledge. CEDAR Technical Report Number 2, CEDAR Project, LIRIS,
Département d’Informatique, Université Claude Bernard Lyon 1, Villeurbanne, France, May 2013.
[Available online23].

8. Hassan Aı̈t-Kaci and Samir Amir. Classifying and querying very large taxonomies with bit-vector
encoding. Journal of Intelligent Information Systems, pages 1–25, September 2015. [Available on-
line24].

9. Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation of lattice
operations. ACM Transactions on Programming Languages and Systems, 11(1):115–146, January
1989. [Available online25].

17 http://dbs.informatik.uni-halle.de/Lehre/DBS IIa SS02/p253-agrawal.pdf
18 cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
19 http://ceur-ws.org/Vol-250/paper 2.pdf
20 cedar.liris.cnrs.fr/papers/ctr4.pdf
21 cedar.liris.cnrs.fr/papers/ctr16.pdf
22 cedar.liris.cnrs.fr/papers/ctr11.pdf
23 cedar.liris.cnrs.fr/papers/ctr2.pdf
24 https://www.researchgate.net/... Very Large Taxonomies with Bit-Vector Encoding
25 www.hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf

http://cedar.liris.cnrs.fr/
http://dbs.informatik.uni-halle.de/Lehre/DBS_IIa_SS02/p253-agrawal.pdf
http://cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://ceur-ws.org/Vol-250/paper_2.pdf
http://cedar.liris.cnrs.fr/papers/ctr4.pdf
http://cedar.liris.cnrs.fr/papers/ctr16.pdf
http://cedar.liris.cnrs.fr/papers/ctr11.pdf
http://cedar.liris.cnrs.fr/papers/ctr2.pdf
https://www.researchgate.net/publication/281375833_Classifying_and_Querying_Very_Large_Taxonomies_with_Bit-Vector_Encoding
http://www.hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf

An Efficient and Large-Scale Reasoning Method for the Semantic Web 23

10. Hassan Aı̈t-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and Peter Van Roy. The Wild
LIFE handbook (prepublication edition). [Available online26], 1994.

11. Hassan Aı̈t-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in inheritance.
Journal of Logic Programming, 3:185–215, 1986. [Available online27].

12. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszyński and Martin
Wirsing, editors, Proceedings of the 3rd International Symposium on Programming Language Imple-
mentation and Logic Programming (Passau, Germany), number 528 in Lecture Notes in Computer
Science, pages 255–274. Springer-Verlag, August 1991. [Available online28].

13. Hassan Aı̈t-Kaci and Andreas Podelski. Logic programming with functions over order-sorted feature
terms. In Evelina Lamma and Paola Mello, editors, Proceedings of the 3rd International Workshop
on Extensions of Logic Programming (Bologna, Italy), pages 100–119. LNAI 660, Springer-Verlag,
February 1992. [Available online29].

14. Samir Amir and Hassan Aı̈t-Kaci. CEDAR: a fast taxonomic reasoner based on lattice operations—
system demonstration. In Eva Blomqvist and Tudor Groza, editors, Proceedings of the Posters &
Demonstrations Track of the 12th International Semantic Web Conference, pages 9–12, Sydney, Aus-
tralia, October 2013. CEUR Workshop Proceedings. [Available online30].

15. Samir Amir and Hassan Aı̈t-Kaci. Design and implementation of an efficient semantic web reasoner.
CEDAR Technical Report Number 12, CEDAR Project, LIRIS, Département d’Informatique, Uni-
versité Claude Bernard Lyon 1, Villeurbanne, France, October 2014. [Available online31].

16. Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
New York, NY, USA, 2003. [Available online32].

17. Minwei Chen, Rafiqul Haque, and Mohand-Saı̈d Hacid. CedTMart—a triplestore for storing and
querying blinked data. CEDAR Technical Report Number 7, CEDAR Project, LIRIS, Département
d’Informatique, Université Claude Bernard Lyon 1, Villeurbanne, France, July 2014. [Available on-
line33].

18. Panos Constantopoulos, Matthias Jarke, John Mylopoulos, and Yannis Vassiliou. The software infor-
mation base: A server for reuse. The VLDB Journal, 4(1):1–43, January 1995. [Available online34].

19. Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette de Keizer. Comparison of reasoners
for large ontologies in the OWL 2 EL profile. Semantic Web Journal, 2(2):1–5, April 2011. [Available
online35].

20. Scott Federhen. The NCBI taxonomy database. Nucleic Acids Research, 40:136–143, January 2012.
[Available online36].

21. John Goodwin. Experiences of using OWL at the ordnance survey. In Bernardo Cuenca Grau, Ian
Horrocks, Bijan Parsia, and Peter Patel-Schneider, editors, Proceedings of the OWLED’05 Workshop
on OWL: Experiences and Directions, Galway, Ireland, November 11–12, 2005. CEUR Workshop
Proceedings Vol. 188. [Available online37].

22. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics, 3(2–3):158–182, July 2005. [Available online38].

23. Robert Hoehndorf, Midori A. Harris, Heinrich Herre, Gabriella Rustici, and Georgios V. Gkoutos. Se-
mantic integration of physiology phenotypes with an application to the Cellular Phenotype Ontology.
Bioinformatics, 28(13):1783–1789, April 2012. [Available online39].

26 hassan-ait-kaci.net/pdf/WildLIFE-HANDBOOK.pdf
27 hassan-ait-kaci.net/pdf/login-jlp-86.pdf
28 hassan-ait-kaci.net/pdf/meaningoflife.pdf
29 hassan-ait-kaci.net/pdf/elp-92.pdf
30 ceur-ws.org/Vol-1035/iswc2013 demo 3.pdf
31 cedar.liris.cnrs.fr/papers/ctr12.pdf
32 cdn.preterhuman.net/texts/.../The Description Logic Handbook...(2003).pdf
33 cedar.liris.cnrs.fr/interns/MinweiChen/ctr7.pdf
34 https://www.researchgate.net/publication/...A Server for Reuse
35 www.semantic-web-journal.net/.../swj120 2.pdf
36 www.ncbi.nlm.nih.gov/.../gkr1178.pdf
37 ftp.informatik.rwth-aachen.de/.../sub17.pdf
38 www.websemanticsjournal.org/.../70/68
39 www.ncbi.nlm.nih.gov/.../bts250.pdf

http://hassan-ait-kaci.net/pdf/meaningoflife.pdf
http://hassan-ait-kaci.net/pdf/elp-92.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_3.pdf
http://cedar.liris.cnrs.fr/papers/ctr12.pdf
http://cdn.preterhuman.net/texts/science_and_technology/The%20Description%20Logic%20Handbook%20-%20Theory,%20Implementation%20and%20Applications%20(2003).pdf
http://cedar.liris.cnrs.fr/interns/MinweiChen/ctr7.pdf
https://www.researchgate.net/publication/2881853_The_Software_Information_Base_A_Server_for_Reuse
http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245000/pdf/gkr1178.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-188/sub17.pdf
http://www.websemanticsjournal.org/index.php/ps/article/download/70/68
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381966/pdf/bts250.pdf

24 Samir Amir, Hassan Aı̈t-Kaci

24. Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci. A database interface for complex objects.
In Pascal Van Hentenryck, editor, Proceedings of the 11th International Conference on Logic Pro-
gramming (ICLP’94), pages 437–455, Santa Margherita Ligure (Italy), June 13–17, 1994. MIT Press.
[Available online40].

25. Matthias Jarke, Rainer Gallersdörfer, Manfred A. Jeusfeld, and Martin Staudt. ConceptBase—a de-
ductive object base for meta data management. Journal of Intelligent Information System, 2:167–192,
1994. [Available online41].

26. Michael J. Lawley and Cyril Bousquet. Fast classification in Protégé: Snorocket as an OWL 2 EL
reasoner. In Thomas Meyer, Mehmet A. Orgun, and Kerry Taylor, editors, Proceedings of the 2nd
Australasian Ontology Workshop: Advances in Ontologies (AOW 2010), pages 45–50, Adelaide,
Australia, December 2010. ACS. [Available online42].

27. Anne M. Maglia, Jennifer L. Leopold, L. Analı́a Pugener, and Susan Gauch. An anatomical ontology
for amphibians. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E.
Klein, editors, Pacific Symposium on Biocomputing, pages 367–378. World Scientific, January 2007.
[Available online43].

28. John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing
knowledge about information systems. ACM Transactions on Information Systems, 8(4):325–362,
October 1990. [Available online44].

29. U.S. National Library of Medicine. Medical subject headings MeSH. Web Site, 2014. [Available
online45].

30. Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, and Jhonatan Garcia. Reasoning the FMA ontologies
with TrOWL. In Samantha Bail, Birte Glimm, Rafael S. Gonçalves, Ernesto Jiménez-Ruiz, Yevgeny
Kazakov, Nicolas Matentzoglu, and Bijan Parsia, editors, Proceedings of 2nd International Workshop
on OWL Reasoner Evaluation (ORE 2013), pages 107–113. CEUR Workshop Proceedings, July 2013.
[Available online46].

31. Cornelius Rosse and José L.V. Mejino Jr. A reference ontology for biomedical informatics: the foun-
dational model of anatomy. Journal of Biomedical Informatics, 36(6):478–500, December 2003.
[Available online47].

32. Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A highly-efficient OWL reasoner. In Ulrike
Sattler and Cathy Dolbear, editors, Proceedings of the 5th International Workshop on OWL Experi-
ences and Directions, Karlsruhe, Germany, October 2008. OWLED’08, CEUR Workshop Proceed-
ings. [Available online48].

33. Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL query for OWL-DL. In Christine Golbreich,
Aditya Kalyanpur, and Bijan Parsia, editors, Proceedings of the Workshop on OWL: Experiences and
Directions (OWLED 2007), Innsbruck, Austria, June 2007. CEUR Workshop Proceedings. [Available
online49].

34. Kavitha Srinivas. OWL reasoning in the real world: Searching for Godot. In Bernardo Cuenca
Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Proceedings of the 22nd International
Workshop on Description Logics (DL 2009), Oxford, United Kindgom, July 27–30 2009. CEUR
Workshop Proceedings. Invited lecture [Available online50].

35. Satoko Yamamoto, Takao Asanuma, Toshihisa Takagi, and Ken Ichiro Fukuda. The Molecule Role
Ontology: An ontology for annotation of signal transduction pathway molecules in the scientific liter-
ature. Comparative and Functional Genomics, 5(6–7):528–536, October 2004. [Available online51].

40 http://www.hassan-ait-kaci.net/pdf/iclp94.pdf
41 https://pdfs.semanticscholar.org/f4cb/6d9f864c03b52ea173bde125239f271a1c05.pdf
42 krr.meraka.org.za/˜aow2010/Lawley-etal.pdf
43 psb.stanford.edu/.../psb07/maglia.pdf
44 http://www.cs.toronto.edu/ j̃m/Pub/Telos.pdf
45 www.nlm.nih.gov/mesh/meshhome.html
46 ceur-ws.org/Vol-1015/paper 18.pdf
47 www.j-biomed-inform.com/.../pdf
48 www.cs.ox.ac.uk/ian.horrocks/.../ShMH08b.pdf
49 ceur-ws.org/Vol-258/paper14.pdf
50 www.cs.ox.ac.uk/DL2009/.../Srinivas.pdf
51 downloads.hindawi.com/.../439679.pdf

http://www.hassan-ait-kaci.net/pdf/iclp94.pdf
https://pdfs.semanticscholar.org/f4cb/6d9f864c03b52ea173bde125239f271a1c05.pdf
http://krr.meraka.org.za/~aow2010/Lawley-etal.pdf
http://psb.stanford.edu/psb-online/proceedings/psb07/maglia.pdf
http://www.cs.toronto.edu/~jm/Pub/Telos.pdf
http://www.nlm.nih.gov/mesh/meshhome.html
http://ceur-ws.org/Vol-1015/paper_18.pdf
http://www.j-biomed-inform.com/article/S1532-0464(03)00127-8/pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf
http://ceur-ws.org/Vol-258/paper14.pdf
http://www.cs.ox.ac.uk/DL2009/proceedings/invited/Srinivas.pdf
http://downloads.hindawi.com/journals/ijg/2004/439679.pdf

	Introduction
	Preliminaries
	The CEDAR Reasoner
	Experimental Evaluation
	Conclusion

