
✬

✫

✩

✪

C E D A R

Technical Report Number 2

Classifying and Querying
Very Large Taxonomies

A Comparative Study to the Best of Our Knowledge

Hassan Aı̈t-Kaci and Samir Amir

May 2013

Publication Note

Revision version:

January 9, 2015

Authors’ address:

LIRIS - UFR d’Informatique

Université Claude Bernard Lyon 1

43, boulevard du 11 Novembre 1918

69622 Villeurbanne cedex

France

Email: hassan.ait-kaci@univ-lyon1.fr

Phone: +33 (0)4 27 46 57 08

Email: samir.amir@univ-lyon1.fr

Phone: +33 (0)4 27 46 57 07

Copyright c© 2015 by the CEDAR Project.

This work was carried out as part of the CEDAR Project (Constraint Event-Driven Automated

Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1 (UCBL). It may not be

copied nor reproduced in whole or in part for any commercial purpose. Permission to copy

in whole or in part without payment of fee is granted for non-profit educational and research

purposes provided that all such whole or partial copies include the following: a notice that

such copying is by permission of the UCBL, with an acknowledgement of the authors and in-

dividual contributors to the work; and all applicable portions of the copyright notice. Copying,

reproducing, or republishing for any other purpose shall require a license with payment of a

fee to the UCBL. All rights reserved.

CEDAR Technical Report Number 2

Classifying and Querying
Very Large Taxonomies

A Comparative Study to the Best of Our Knowledge

Hassan Aı̈t-Kaci and Samir Amir

hassan.ait-kaci@univ-lyon1.fr, samir.amir@univ-lyon1.fr

May 2013

Abstract

This document addresses the question of how efficiently the most well-known

Semantic Web (SW) reasoners perform in processing (classifying and querying)

taxonomies of enormous size. Using techniques that were proposed 25 years

ago for implementing efficient lattice operations, we have implemented a sim-

ple taxonomic concept classification and Boolean query-answering system. We

compared its performance with those of the best existing SW reasoning systems

over several very large taxonomies under the exact same conditions for so-called

TBox reasoning.

Keywords: Scalable Taxonomic Reasoning, Concept Classification, Boolean-Query

Answering, Partial-Order Encoding, Efficient Lattice Operations, Imple-

mentation Techniques

Résumé

Ce document s’intéresse à la question de savoir avec quelle efficacité les meilleurs

raisonneurs pour le Web sémantique traitent des taxonomies de taille énorme

(classification et réponse aux requêtes). Utilisant des techniques proposées il

y a 25 ans, nous avons développé un système élémentaire de classification de

concepts taxonomiques avec réponse à des requêtes booléennes. Nous avons

comparé ses performances avec celles des meilleurs raisonneurs existant sous

exactement les mêmes conditions pour le raisonnement de la “TBox.”

Mots-Clés: Raisonnement sur des grosses taxonomies, classification de concepts,

réponse à des requêtes booléennes, encodage d’ordre partiel, opérations

efficaces dans les treillis, techniques d’implémentation

Table of Contents

1 Introduction 1

2 The State of the Art 1

3 Our Method 3

4 “Just the Facts, Ma’am!” 5

4.1 Classification . 6

4.2 Querying . 7

4.3 Discussion . 12

5 Implementation 13

5.1 Detecting Cycles . 13

5.2 Decoding . 15

6 Conclusion 19

A The CEDAR Taxonomic Reasoner Evaluation Tool 20

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

1 Introduction

This document addresses issues related to two topics:

• Robust and scalable knowledge management and reasoning on the Web;

• Evaluation of semantic web technologies.

Regarding the first topic, we demonstrate how a specific method for taxonomic reason-

ing we have implemented is both robust and scalable using a straightforward technique

on very large taxonomies derived from real-life ontologies. As for the second topic, we

proceed to a comparative evaluation of the best existing Semantic Web (SW) reasoners

on the same taxonomies under the same conditions. This comparative study illustrates

clearly the mutual stance in terms of performance for each respective reasoner with

respect to one another. It also does so for our system, thus putting its performance in

context with the state of the art.

We report comparative-measurement results for taxonomic reasoning over very large

conceptual partial orders. This study addresses the question of how efficiently the

most well-known Semantic Web (SW) reasoners perform in processing (classifying

and querying) taxonomies of enormous size. We focus on Boolean queries (and, or,

not) involving a large number of concepts. The results show that, surprisingly, authors

of systems making up the state of the art in SW reasoning seem to have been unaware

of techniques that were proposed over 25 years ago for implementing efficient lattice

operations [3]. Using these techniques, we have implemented a simple taxonomic

concept classification and Boolean query-answering system, and compared its perfor-

mance with those of the best existing SW reasoning systems over several very large

taxonomies under the exact same conditions for so-called TBox reasoning. The results

show that our simple system is among the best for concept classification and several

orders-of-magnitude more efficient in terms of response time for query-answering. We

present these results in detail and comment them. We recall the simple technique we

have used to achieve such performance, and how it could be even further optimized.

We also discuss future work regarding how more complete ontological reasoning can

be made to scale up to very large ontologies without performance degradation.

The rest of this paper is organized as follows. In Section 2, we recall the state of

the art in terms of Semantic Web reasoners. In Section 3, we explain the method we

have implemented for taxonomic reasoning. In Section 4, we present the results of our

comparative measurements. In Section 5, we make some important remarks dealing

with implementation. We conclude in Section 6 with a summary of our contribution

and perspectives.

2 The State of the Art

In this section, we give a brief description of the SW reasoners that we have used

for our experiments. Note that we have limited our selection to systems that are full-

fledged reasoners, and not just classifiers. This is because our interest goes beyond

May 2013 Page 1 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

concept classification and includes Boolean query answering as well. This rules out

systems such as ELK1 [16], CEL2 [6], CB3 [15], etc., that do not support query an-

swering.

We retrieved and installed the following SW reasoners:

1. FaCT++;4

2. HermiT;5

3. Pellet;6

4. TrOWL;7

5. RacerPro;8

6. SnoRocket.9

FaCT++ (Fast Classification of Terminologies) is a reasoner developed at the Univer-

sity of Manchester [25]. It is based on the Description Logic fragment SHOIQ [14].

It is implemented in C++ as a deductive tableau [18] adapted to the specifics of this

logic. It is claimed to use a wide range of heuristic optimizations. FaCT++ pro-

vides TBox reasoning (subsumption, satisfiability, classification) and partial support

for ABox processing (retrieval).

HermiT is also a reasoner for a (slight extension) of the Description Logic fragment

SHOIQ (called SHOIQ+) [20]. It is based upon hypertableau reasoning, an op-

timized version of tableau reasoning [19]. It purports to provide a faster process for

classifying ontologies. The main optimization of hypertableau vs. tableau that it tries

to minimize nondeterminism in the treatment of disjunctions and is more memory-

efficient. HermiT provides TBox reasoning, with the ability of checking the consis-

tency of an ontology and inferring implicit relationships between concepts.

Pellet is a free open-source Java-based reasoner [21]. It, too, is based on the tableau

algorithm and supports the Description Logic fragment SHOIN (D). It provides

TBox reasoning (subsumption, satisfiability, and classification) and ABox reasoning

(retrieval, conjunctive query answering). It uses many optimization techniques and

supports entailment checks and ABox querying through its interface.

TrOWL (Tractable reasoning infrastructure for OWL 2) was developed at the Univer-

sity of Aberdeen [24]. This is a system that starts by transforming an ontology from

OWL-DL to OWL-QL [9] in order to classify it in polynomial time. Under this trans-

formation, conjunctive query answering and consistency checking remain the same as

for OWL-DL. In addition, TrOWL can generate a database schema for storing normal-

ized representations of OWL-QL ontologies.

1
http://www.cs.ox.ac.uk/isg/tools/ELK/

2
https://code.google.com/p/cel/

3
https://code.google.com/p/cb-reasoner/

4
http://owl.cs.manchester.ac.uk/fact++/

5
http://www.hermit-reasoner.com/

6
http://clarkparsia.com/pellet/

7
http://trowl.eu/

8
http://franz.com/agraph/racer/

9
http://research.ict.csiro.au/software/snorocket

May 2013 Page 2 / 24

http://www.cs.ox.ac.uk/isg/tools/ELK/
https://code.google.com/p/cel/
https://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://www.trowl.eu/
http://franz.com/agraph/racer/
http://research.ict.csiro.au/software/snorocket
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://www.cs.ox.ac.uk/isg/tools/ELK/
https://code.google.com/p/cel/
https://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://trowl.eu/
http://franz.com/agraph/racer/
http://research.ict.csiro.au/software/snorocket

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

RacerPro is a commercial version of RACER (Renamed ABoxes and Concept Expres-

sion Reasoner) [12, 11]. It implements a reasoner for the description logic SHIQ.

RACER provides both TBox and ABox reasoning. It supports all the optimizations of

FaCT++ as well as new techniques for dealing with number restrictions and ABoxes.

Snorocket [17] was proposed as a high-performance implementation of a polynomial-

time classification algorithm for the lightweight Description Logic EL [5].10 It was

primarily meant to be optimized for classifying SNOMED CT. It can process only

conjunctive queries.

The following section summarizes the specific method for taxonomy classification

based on transitive closure that we have implemented and compared to all the above

systems for Boolean query answering.

3 Our Method

In this section, we give a self-contained summary of the method we have implemented

in order to measure its performance for classification of bare taxonomies and query

answering of Boolean queries.

Our method is an implementation in Java of the technique described in [3]. It con-

sists in representing the elements of a taxonomy (i.e., an arbitrary poset) as bit vectors.

Thus, each element has a code (a bit vector) carrying a “1” in the position correspond-

ing to the index of any other elements that it subsumes. In this manner, the three

Boolean operations on sorts are readily and efficiently performed as their correspond-

ing operations on bit-vectors. However, for this to be possible, these bit vectors must

be encoded as the reflexive transitive closure of the “is-a” relation obtained from sub-

sort declarations.

How to compute such a closure has been well-known—e.g., the Warshall-Strassen

method using clever matrix multiplication tricks [23, 10, 7]. However, for a poset of

n elements, this method has quite a large time complexity—even with the best known

algorithm to date, it is O(n2.23727) [22, 28].11 In fact, in practice, the straightforward

O(n3) in-place multiplication method known as Warshall’s Algorithm [27, 26] is used

in most cases.

Figure 1 gives Java code for Warshall’s algorithm performed “in-place” on binary

codes represented as bit-sets stored in an array SORTS. A bit-set object is endowed

with a method get(int) that returns the value of its bit in the specified position

as a boolean, and a method set(int,boolean) that sets its bit in the specified

position to the specified Boolean value.

Now, while Warshall’s algorithm may be viable for relatively small posets, it simply

becomes unusable for posets of the size of the taxonomies we are considering.

Note, however, that transitive-closure methods need pay such a high performance cost

10Description Logics in the EL-family are weaker versions that provide existential roles (∃r.C) but no

universal roles (∀r.C).
11To the best of our knowledge, this is the latest best bound as of 2011. However, these algorithms are

not implementable due to prohibitive size of constants.

May 2013 Page 3 / 24

http://www.franz.com/agraph/racer/
http://www.ihtsdo.org/snomed-ct/
http://chuck.ferzle.com/Notes/Notes/DiscreteMath/Warshall.pdf
http://en.wikipedia.org/wiki/Coppersmith-Winograd_algorithm

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

int n = SORTS.size();

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

if (!SORTS[i].code.get(j)))

SORTS[i].code.set(j,

SORTS[i].code.get(k)

&&

SORTS[k].code.get(j));

Figure 1: Java code for “in-place” Warshall’s algorithm

only due to the fact that they are devised for arbitrary graphs. But concept taxonomies

are not arbitrary graphs. Namely, a necessary condition for a set of partially-ordered

concepts to be semantically consistent is that its graph must be acyclic. Thus, a consis-

tent taxonomy must be a directed-acyclic graph (or dag) with a least element (⊥) and a

highest element (⊤). In [3], it is shown that for such a dag, an O(n) transitive-closure

algorithm exists and is proven correct. This method is described as Algorithm 1.

Algorithm 1 Taxonomy Classification Algorithm

1: procedure CLASSIFY

2: L← Parents(⊥);
3: while L 6= Ø do

4: for all x ∈ L do

5: x.code← 2x.index ∨
∨

y∈Children(x) y.code;
6: x.coded← true;
7: end for

8: L←
⋃

x∈L Parents(x);
9: for all x ∈ L do

10: if ∃y ∈ Children(x) and ¬y.coded then

11: L← L− {x};
12: end if

13: end for

14: end while

15: end procedure

The procedure CLASSIFY assumes that each sort s has a set Parents(s) and a set Chil-

dren(s) provided (i.e., from the “is-a” declarations of members of the taxonomy). Each

sort is an object that has a code field, which is its bit vector representation (initialized

to be all zeroes), a unique characteristic index field which is an integer (viz., its number

in the taxonomy), and a Boolean field coded initially set to false denoting whether this

sort has been encoded or not.

Algorithm 1 computes the reflexive-transitive closure of a taxonomy [3].12 This algo-

rithm can be explained quite easily. It proceeds layer by layer, starting with the parents

12op. cit., pages 125–126.

May 2013 Page 4 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

of ⊥ (i.e., the minimal sorts in the taxonomy) [Line 2], assigning a code to each ele-

ment in the current layer to be the bitwise or of its children and also setting the bit in

its index position [Line 5]. Each time an element is encoded, it is marked to be so by

setting its coded flag to true [Line 6]. Then, a new layer is computed from the current

one as the union of all it parents [Line 8] from which any sort that has at least one child

not encoded is removed [Line 11]. Indeed, by construction, such sorts can always be

reached later. This proceeds until an empty layer is obtained [Line 3]—which is when

all sorts have been encoded.

This algorithm’s main loop [Lines 3–14] clearly visits each sort exactly once, and is

thus linear. The auxiliary computation of the next layer [Lines 8–13] has comparatively

marginal cost as it can be made efficient using constant access-time data structures

for the sets of parents and children, making set operations on them negligible. Also

proceeding bottom up has a clear performance advantage for dags such as most concept

taxonomies, where sorts tend to have many less parents than they have children.

It is this method that we have implemented, tested, and compared with the best SW

reasoners we could retrieve, to run on the very large taxonomies we extracted from ex-

isting publicly accessible ontologies of enormous size. The real bonus of this method

is, of course, that all three Boolean operations on sorts stay virtually O(1) irrespective

of the size of the taxonomy nor that of the number of concepts in the query. The result

of any such query is the set of sorts with codes in the set of maximal common lower-

bounds of the computed code.13 All the above claims are clearly demonstrated on all

the performance graphs we are reporting in the next section.

As for incrementality, removing a sort amounts simply to erasing its index position in

all codes that have it set. Adding a sort (through a new “is-a” declaration s1 < s2) is

done by restarting the bottom up propagation of the loop [Lines 3–14] starting from

the parents of lower of the two sorts, after having reset all its ancestors to the uncoded

status. In case of several new “is-a” declarations, the same procedure is applied but

starting from the union of the parents of the minimal new sorts after resetting all their

ancestors to the uncoded status.

The next section reports the results of our experiments with the six reasoners that we re-

trieved (FaCT++, HermiT, Pellet, RacerPro, TrOWL, SnoRocket) and ours (CEDAR).

All runs for all reasoners were carried out under the exact same conditions for exactly

the same queries.

4 “Just the Facts, Ma’am!”

We extracted the bare concept taxonomies gathered from four very large ontologies.

Here they are, listed in order of increasing sizes:

1. Wikipedia—this is an ontology derived from the Wikipedia online database

(size: 111,599 sorts);14

13See Section 5.
14
http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php

May 2013 Page 5 / 24

http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 2: Classification time per reasoner for the “Wikipedia” and “BioModels” taxonomies

2. BioModels—this is an ontology of various biological models (size: 182,651

sorts);15

3. MeSH—(Medical Subject Headings) this is an ontology of the National Library

of Medicine (size: 286,381 sorts);16

4. NCBI—this is the National Center for Biotechnology Information’s ontology of

all known living organisms (size: 903,617 sorts).17

We focused only on bare conceptual taxonomic reasoning.18 That is, we considered no

roles, just sorts—a sort being defined as a monadic concept in a partially ordered “is-

a” taxonomy. The “reasoning” on such sorts amounts to propositional logic. In other

words, this boils down to computing Boolean expressions consisting of sorts and the

three operations: and, or, not. Seen another (equivalent) way, these operations ap-

plied to set-denoting expressions are interpreted respectively as set intersection, union,

and complementation. The topmost sort ⊤ denotes the set of all things, and the bot-

tommost sort ⊥ denotes the empty set—i.e., the set of no thing.

4.1 Classification

For each reasoner, Figures 2 and 3 show the comparative classification time perfor-

mances on each of the large taxonomies we have selected. This makes six out of the

seven reasoners. We did not consider SnoRocket in these classification-performance

graphs because we realized that the system does not actually perform any preliminary

classification, but does so on demand at query time.

While our system (CEDAR—the rightmost on all graphs) is not always the best per-

formance for classification, it is always among the 3 best out of six, the worst being

15
http://bioportal.bioontology.org/ontologies/3022

16
http://www.nlm.nih.gov/mesh/meshhome.html

17
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

18See Section 4.3 for a discussion concernining this point.

May 2013 Page 6 / 24

http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 3: Classification time per reasoner for the “MeSH” and “NCBI” taxonomies

systematically TrOWL. This latter point may be due to the fact that it involves a pre-

liminary compilation from DL to QL. Be that as it may, one can accept a longer classi-

fication time if it means faster query answering. In this regard, as illustrated next, our

system definitely keeps a huge margin over all the others. It is to be noted also that

TrOWL is faster at query answering relatively to the others (although still quite worse

than our system on all tested taxonomies). This, again, may be justified by the longer

classification time. On the other hand, HermiT, that is among the better classifiers, is

always the worst for query answering. This is shown next.

4.2 Querying

For each of the seven reasoners, Figures 4–11 show the comparative query response

time performances for two kinds of queries. If some reasoners are missing on some of

these graphs, it is because they could not provide an answer before a time-out period

that we set to 30 minutes.

The first series of graphs (Figures 4–7) are for mixed conjunctive and disjunctive

queries, of the form: s1& . . .&sn/2&(sn/2+1| . . . |sn), for n = 10, 20, . . . , 100.19 We

made one exception for SnoRocket, for which the queries were all conjunctive since

the latest system available does not, to the best of our knowledge, support disjunctive

queries.

The second series of graphs (Figures 8–11) are for purely disjunctive queries of the

form: s1| . . . |sn, for n = 10, 20, . . . , 100. We did not include SnoRocket in this series

of tests since, again, the system we retrieved does not support disjunctive queries.

In both series of graphs, it is clear that our system (CEDAR) systematically achieves

the best performance. Moreover, it does so by several orders of magnitude (recall that

the scale of time is logarithmic).

19We use “&” to denote “and,” and “|” to denote “or.”

May 2013 Page 7 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 4: Mixed-query response time per reasoner for the “Wikipedia” taxonomy

Figure 5: Mixed-query response time per reasoner for the “BioModels” taxonomy

May 2013 Page 8 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 6: Mixed-query response time per reasoner for the “MeSH” taxonomy

Figure 7: Mixed-query response time per reasoner for the “NCBI” taxonomy

May 2013 Page 9 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 8: Disjunctive-query response time per reasoner for the “Wikipedia” taxonomy

Figure 9: Disjunctive-query response time per reasoner for the “BioModels” taxonomy

May 2013 Page 10 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Figure 10: Disjunctive-query response time per reasoner for the “MeSH” taxonomy

Figure 11: Disjunctive-query response time per reasoner for the “NCBI” taxonomy

May 2013 Page 11 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Taxonomy FaCT++ HermiT TrOWL Pellet RacerPro SnoRocket CEDAR

Wikipedia 100 0.13 0.51 0.21 0.000233

BioModels 100 0.13 Error 0.24 0.000074

MeSH 100 1.17 8.29 2.60 0.000530

NCBI 5.78 100 19.75 0.002627

Table 1: Relative normalized average percentiles of performance times for mixed queries

Taxonomy FaCT++ HermiT TrOWL Pellet RacerPro SnoRocket CEDAR

Wikipedia 74.65 2.86 100 N/A 0.00719

BioModels 100 4.68 Error N/A 0.00258

MeSH 67.50 3.01 100 N/A 0.00141

NCBI 100 5.10 N/A 0.00141

Table 2: Relative normalized average percentiles of performance times for disjunctive queries

4.3 Discussion

Although the graphs in Figures 4–11 speak for themselves, it is interesting to get an

appreciation of the relative performances for query answering of all the reasoners we

have tested. In order to do so, Tables 1 and 2 sum up the facts displayed in the graphs

by taking the average over all query sizes (viz., from 10 to 100 concepts), giving the

maximum of these averages the value 100, and showing all the other averages as per-

cent values.

Empty cells mean that the reasoner was never able to provide an answer within our

time-out limit (which, again, was set to 30 minutes). On the “BioModels” taxonomy,

Pellet stumbles into a Java runtime error for some unknown reason.

Table 1 shows these figures for the mixed conjunctive and disjunctive queries. Ta-

ble 2 shows these figures for purely disjunctive queries. Again, SnoRocket does not

appear in the latter because it could not be tested on disjunctive queries (hence the N/A

entries).

The reason why we limited our study to bare propositional reasoning is that this is (or

ought to be) the most basic capability of any ontological reasoner. Any further capa-

bility (e.g., reasoning with roles—existential and/or universal, cardinality constraints,

etc..) must be conjugated with the basic propositional sort reasoning. In fact, in such

systems, a “complex” concept is typically a sort conjoined with some additional role-

related expression. Thus, one can see bare Boolean taxonomic sort reasoning as sheer

abstract interpretation of complex-concept reasoning [8].

Now, in terms of implementing such reasoners, it comes as evidence that efficiency

must start with the simpler form of reasoning since it is part of any further reasoning.

In fact, taking advantage of commutativity and associativity of conjunction, it may

even be a technique of optimizing the process of ontological reasoning. Indeed, taking

a complex expression such as involving a Boolean combination of expressions such of

the form s & s-properties, ignoring the s-properties parts as a first pass will narrow

the original expression to its essential remaining maximal sorts.

May 2013 Page 12 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

In order to carry out these experiments, we also developed a tool with an easy-to-use

GUI that lets a user run these tests for any listed reasoner and taxonomy.20 This tool

is available for download from the CEDAR Project’s website for anyone to verify our

results.21 A video clip of these demos showing these experiments in vivo, and a web

service for running these demos on line are to be posted as well. In this way, our results

may hopefully not have to be taken on faith, but could be verified de visu by anyone

who might wish to check them on their own.

Finally, it is worth pointing out that once a taxonomy has been classified, it may be

saved on disk to be reloaded without any penalty and reused over and over.22 This

is akin to compiling a program and not needing to recompile it for each use. In

this regard, we do not understand the relative importance given in SW literature to

performance of ontology classification as opposed to that of query answering. In

programming-language technology, what is of prime importance is runtime perfor-

mance, not compile-time performance.

5 Implementation

In this section, we discuss implementation issues dealing with detecting and identify-

ing potential cycles in a taxonomy being encoded, and decoding codes into sorts.

5.1 Detecting Cycles

This section adds some information concerning the detection and identification of po-

tential cycles in a set of “is-a” declarations specifying a taxonomy.

Problem

Since it expresses a subset ordering among concepts, a taxonomy is supposed to be a

directed acyclic graph (dag). However, it may be possible that mistakes occur whereby

the “is-a” declarations among concepts contain inconsistencies in the form of cycles.

To detect such cycles is thus useful for a classification tool to allow reporting them for

correction to the user.

If the general O(n3) Warshall algorithm is used to compute transitive-closure codes

for all sorts in the taxonomy, then an existing maximal cycle will necessarily imply that

all its elements are given equal codes. Indeed, by transitivity, the code of an element

denotes the set of all its descendants. But all the elements of a cycle have the same set

of descendants, and so their codes must be equal. Such a cycle is in fact an equivalence

class for the least equivalence relation containing the declared “is-a” pairs.

One could eliminate all such cycles by collapsing them into a single sort (the class

representative), obtaining the quotient set, which is then a dag. However, this is not

20See Section A for an overview.
21
http://cedar.liris.cnrs.fr/data/CEDAR-V1.0.zip

22We implemented such a facility, of course.

May 2013 Page 13 / 24

http://cedar.liris.cnrs.fr/data/CEDAR-V1.0.zip

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

desirable since such cycles are in all cases errors resulting from inconsistent declara-

tions. In this case, they should be flagged as errors and their contents identified.

Reporting such cycles efficiently can be done by performing a topological reordering

of the taxonomy according to the codes that would guarantee that sorts of equal codes

are contiguous. Thus, a maximal cycle must be a maximal contiguous sequence of

equal-coded sorts in this topological reordering of the taxonomy.

However, for the reasons discussed earlier in this paper, it is not feasible to use War-

shall’s algorithm to compute the transitive closure on very large taxonomies. In ad-

dition, reordering such a very large taxonomy using QuickSort will be on average

O(n log n) with a prohibitive, although very rare, O(n2) worst case [13].23

Note that using our bottom-up encoding to compute the transitive closure of a taxon-

omy is correct only if it is a dag. If there are cycles in it, it will necessarily terminate

with some of its elements left without code. This is because in Algorithm 1 a layer

computed from a previous one [Line 8] removes any sort that has at least one child not

encoded [Line 11]. This is correct for a dag since such sorts will always be reached

later through a different longer path from⊥. But the existence of a cycle will make this

assumption incorrect. For example, declaring both s1 ≺ s2 and s2 ≺ s1 will cause

both s1 and s2 (and all their ancestors) to be removed from any layer to be encoded.

Therefore, the best we can expect with the bottom-up encoding method is that it always

terminate in at most n iterations for a taxonomy of n elements. If the taxonomy is

indeed a dag, all sorts will be correctly encoded. But if there are cycles, it will detect

this to be the case (by checking that there remain non-encoded sorts upon termination).

However, it does not have any possiblity to identify how many maximal cycles there are

and which sorts compose them. It is because all it knows is that bottom-up encoding

left some elements non-encoded—which happens if and only if there are cycles. But

it does not have specific information allowing identification of which exact (maximal)

cycle(s) they are.

Solution

There is a simple and feasible way to proceed. It is enough to collect the non-encoded

sorts after a bottom-up encoding in a new set to be classified using Warshall’s method

and topologically reordered. This is feasible then because such a set is relatively much

smaller than the full declared taxonomy. In this way, all cycles can be identified as

maximal contiguous elements and reported as errors.

Let us now define such a topological ordering. Recall that a taxonomy of n sorts is

represented as an array of size n of Sort objects that are characterized by three fields;

the sort’s:

1. index—its offset in the array;

2. code—its bit-vector encoding;

3. name—its name.

23
http://en.wikipedia.org/wiki/Quicksort

May 2013 Page 14 / 24

http://en.wikipedia.org/wiki/Quicksort

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Using this precedence test on sorts, we can thus obtain a unique topological (total)

ordering of a taxonomy whereby a sort s is said to precede another sort s′ iff, in this

order:24

1. s.code < s′.code; or,

2. s.code = s′.code and s.index < s′.index; or,

3. s and s′ are unrelated, and:

• |s.code| < |s′.code|; or,

• |s.code| = |s′.code| and,

firstDiff(s.code, s′.code) < firstDiff(s′.code, s.code).

The expression |c| for a code c denotes this code’s cardinality (i.e., its number of bits

set to true). The expression firstDiff(c, c′) for two codes of equal cardinality c

and c′ denotes the lowest 1-bit position in c that is 0 in c′. So the last condition ranks

sorts according to the number of descendants, and when such are equal, according to

the descendant of lowest differing index.

This ordering on sorts will keep lesser sorts and sorts of lesser cardinality at lower

ranks. Same-cardinality codes (i.e., sort with same number of subsorts) are ranked ac-

cording to lowest index of the subsort contained in one but not the other. For example,

code 1000111 ({0, 1, 2, 6}) is toplogically less than 0101011 ({0, 1, 3, 5}) because

2 < 3.

It is not difficult to see that such a topological reordering will always end up with

equally encoded elements being contiguous, while sorts with a greater number of lower

bounds will be at higher ranks. In this manner, it is easy to identify all cycles in one

single sweep of the taxonomy array as maximal sequences of contiguous equal codes

of length at least 2.

As we shall see next, such a topological reordering of the taxonomy is also useful for

decoding codes into sorts.

5.2 Decoding

We now give a succint description of a few points regarding decoding—i.e., relating

bit-vector codes to the sorts they denote.

By construction of transitive closure, Algorithm 1, the bit vector of a sort at index i

(0 ≤ i ≤ n − 1) has a 1 in position j (0 ≤ j ≤ n − 1) if and only if the sort at index

j is its subsort. Therefore, a sort’s bit vector has 1’s in all and only the positions of its

descendant sorts. For example, the taxonomy shown as Figure 12 containing 12 sorts

(other than ⊤ and ⊥) will result in the encoding shown as Table 3. Since there are 12

sorts in this taxonomy, all codes in this taxonomy have 12 bits. The top and bottom

elements (⊤ and ⊥) are implicit both in Figure 12 and in Table 3. So the code for

bottom is all 0’s, and the code for ⊤ is all 1’s.

24The ordering on bit-vector codes is simply defined as c1 ≤ c2 iff c1 = c1&c2.

May 2013 Page 15 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

K L

H I J

F G

C D E

A B

Figure 12: Example of a small “is-a” taxonomy

Index Code Sort

11 101110111111 L

10 011111111111 K

9 001010111111 I

8 000110111111 J

7 000010011011 G

6 000001101111 H

5 000000101111 F

4 000000011000 E

3 000000001000 B

2 000000000101 C

1 000000001011 D

0 000000000001 A

Table 3: Transitive-closure codes for sorts in Figure 12

May 2013 Page 16 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

animal

carnivore pet bird

canid

dog canary ostrich

poodle

Figure 13: Example of a small animal “is-a” taxonomy

Let us first consider codes obtained without using negation. In other words, let us first

restrict ourselves to decoding the result of only positive queries—i.e., ones involving

sorts of an encoded taxonomy using a Boolean expression of its sorts’ bit-vector codes

using bitwise and, or—but not not. This always results in a bit vector. In order

to determine what sorts this resulting bit vector corresponds to, there are two cases:

either the resulting bit vector is that of an existing sort, or it is not.

In the first case, in order to speed up determining the sort of the bit vector, all codes

are stored in a hash table mapping a code to its sort. In this way, evaluating for

example “F&G” in the taxonomy of Figure 12, which results in the bit-vector code

000000001011, the sort can be retrieved in this hash table to be associated with the

code—sort D in our example.

In the second case, the code resulting from a query evaluation does not correspond to

an existing sort. For example evaluating “I&J” in the taxonomy of Figure 12 yields

the code 000010111111, which does not correspond to any specific sort in Table 3.

However, semantically, this code is necessarily a minimal upper bound of the set de-

noted by the resulting sort if it existed. Hence, if we wish to express the resulting sort

in terms of existing sorts, it must be the union of all the sorts whose codes are maximal

lower bounds of the resulting code. In order to compute what sorts are in this set of

maximal upper bounds, it suffices to retrieve all the sorts at index i such that there is a

1 at position i in the resulting code and keep only the maximal ones. In our example,

the code 000010111111has a 1 in positions 0, 1, 2, 3, 4, 5 and 7. This means that its

subsorts are A, D, C, B, E, F, and G. However, among these, only F and G are maximal.

Therefore, the result of the query “I&J” is the disjunctive sort {F;G}.

While the above decoding scheme is correct for positive queries, it is not so however

if the query made use of negation. To see this, let us consider the taxonomy shown as

Figure 13 and its encoding: shown as Table 4.

Let us now consider the (negative) query: “!canid.” The code resulting from eval-

May 2013 Page 17 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Index Code Sort

8 100000000 poodle

7 010000000 canary

6 001000000 ostrich

5 100100000 dog

4 100110000 canid

3 110101000 pet

2 100110100 carnivore

1 111111111 animal

0 011000001 bird

Table 4: Transitive-closure codes for sorts in Figure 13

Rank Index Code Sort

8 1 111111111 animal

7 3 110101000 pet

6 2 100110100 carnivore

5 4 100110000 canid

4 0 011000001 bird

3 5 100100000 dog

2 8 100000000 poodle

1 7 010000000 canary

0 6 001000000 ostrich

Table 5: Ordered transitive-closure codes for sorts in Figure 13

uating this query is the complement of the sort “canid”—namely, 011001111.

The decoding method that we used above will yield the maximal elements in index

set {0, 1, 2, 3, 6, 7}—viz., {bird, animal, pet, ostrich, canary, poodle};
namely, {animal}, which is obviously wrong. This decoding is incorrect because a

negated code can no longer be interpreted as having a ‘1’ in a position corresponding

to a subsort. Indeed, for such a code, a ‘1’ in position i means that sort of index i is

either a supersort or unrelated. (This is because it comes from negating ‘0’ at position

i in the complement where that meant “sort of index i is not a subsort of this sort.”)

Note however that, in all cases, a guaranteed-correct way of decoding a code c is to

sweep all the taxonomy and keep any maximal sort whose code c′ is such that c′ ≤ c.

In order to make this sweep more efficient, it is convenient to reorder the taxonomy

using a topological precedence ordering respecting the code subsumption ordering and

giving a lower rank to a sort of lower index for incomparable codes. For example, such

a total reordering for the taxonomy in Figure 13 is given by the Table 5, using the sort

precedence ordering defined in the previous section.

To compute such a set of maximal lower bounds of a given code from a topologi-

cally reordered taxonomy, we sweep it upwards starting from rank 0. As we proceed

upwards, we collect lower bounds of the given code in a set, keeping only maximal

May 2013 Page 18 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

elements. Note that there is no need to go higher than the rank of the first sort whose

code is the given code or that is a supersort of the given code (because the rank order

of the topologically reordered array ensures that all sorts of higher rank are greater or

unrelated).

In our example above, decoding the code 011001111 resulting from the evaluation

of “!canid,” we need only sweep no higher than rank 4. This will collect the set of

lower bounds: {ostrich, canary, bird}. Keeping only maximal elements, this

yield the (correct) answer: “bird.”

For efficiency reasons, once a bit-vector code has been decoded, it is stored in a cache

(a hash table) associating the code to the set of sorts whose codes are its maximal lower

bounds. In this way, should the same code appear again as a result, it is first looked up

in this cache to avoid the need to compute again its set of maximal lower bound sorts.

Finally, note that decoding a bit vector is only necessary for extracting the end result

of a query in terms of defined sorts. All intermediate computation need not refer at all

to the sorts and deal only with bit vectors, whether or not they correspond to defined

sorts. There is no loss of information doing so as the encoding plunges the taxonomy

in the minimal Boolean lattice containing it [3].

6 Conclusion

In this paper, we have demonstrated how the state of the art in the best exisiting Se-

mantic Web reasoners, when applied to very large taxonomies, fail to live up to perfor-

mances that can be easily achieved using bit-vector encoding. We have implemented

such a reasoner, and have compared its performances to those of six among the most

renown reasoners.25 Focusing only on pure Boolean taxonomic reasoning—which is

as the core of any SW reasoner—the results of our measurements show that our system

achieves performances for Boolean query answering that are several orders of magni-

tude better than those of the state of the art.

There are several optimizations that may still be performed to our basic method. The

technique known as code modulation (explained in detail in [3]) can take advantage

of a taxonomy’s specific shape to minimize drastically code space. Code modulation

being independent of the encoding technique, it can be applied to any method. Each

module can in fact use different encoding methods each adapted to its specific topol-

ogy. Another optimization to minimize classification time could be to perform lazy

encoding.26 In other words, one could only encode the sorts relevant to a query and

cache intermediate results. The price to pay would be at query time, although only the

first time a subset of the concepts it involves are used.

As for future work, we are extending this work to unification-based Knowledge Repre-

sentation known as Order-Sorted Feature (OSF) constraint logic [2]. While OSF logic

uses functional features, we can use them to represent roles using aggregates. The

advantage is that role-based reasoning is thus made simpler since it relies on Logic-

25To the best of our knowledge.
26In the same manner as we have noticed that SnoRocket does.

May 2013 Page 19 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

Programming unification technology made possible by functional attributes [4, 1].

This is akin to compiling DL-based relational roles into aggregate-valued functional

features. OSF sorts have also a “memoizing” effect whereby no property needs to be

proven again once it has been established for any supersort [2].

Appendix

This appendix gives an overview of the software tool we developed to run our experi-

ments. This tool is publicly available on the CEDAR project website.27

A The CEDAR Taxonomic Reasoner Evaluation Tool

Figures 14 and 15 show a display of the Graphical User Interface (GUI) of a tool

that we developed to ease experimenting with several Semantic Web reasoners and

taxonomies.

Figure 14: Screenshot of the CEDAR Taxonomic Reasoner Evaluation Tool: Basic GUI

Using the GUI displayed as Figure 14, one can:

• select a reasoner from a menu;

27
cedar.liris.cnrs.fr

May 2013 Page 20 / 24

file:cedar.liris.cnrs.fr

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

• select a taxonomy to be loaded from a file located in a specifiable directory;

• classify a loaded taxonomy;

• if the reasoner is ours (CEDAR), the option is offered to save a classified taxon-

omy on disk;

• one can also, again in the case of the CEDAR reasoner, load a taxonomy that

was previously classified and saved;28

• reset the context (i.e., clear the selected reasoner and loaded taxonomy) and the

current query;

• exit the system.

There are also two windows for querying. In the upper one, one can either type in a

query, load a previously saved query, or automatically generate a new query. In the

latter case, a prompt window will ask to specify how many conjunctions, disjunctions,

and negations one wishes the query to contain. The generated query can then be edited,

executed, and/or saved for later reuse. Executing the query shown in the upper window

will display the result in the lower window. This result can also be saved if wished.

Figure 15: Screenshot of the CEDAR Taxonomic Reasoner Evaluation Tool: Query Test

Such a usage is illustrated in Figure 15, which shows what the GUI looks like after

selecting the CEDAR reasoner, loading the taxonomy “Wikipedia,” generating a query

28This feature and the previous one may not be used for other reasoners because they do not offer such

a capability.

May 2013 Page 21 / 24

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

with two ’not’ operations, five ’and’ operations, and three ’or’ operations. The result

of executing this query (i.e., the union of sorts in the taxonomy that are maximal lower

bounds of this sort expression) is displayed in the lower window.

References

[1] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT

Press, Cambridge, MA, USA, 1991. [See online29].

[2] Hassan Aı̈t-Kaci. Data models as constraint systems—A key to the Semantic Web. Con-

straint Processsing Letters, 1(1):33–88, November 2007. [See online30].

[3] Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementa-

tion of lattice operations. ACM Transactions on Programming Languages and Systems,

11(1):115–146, January 1989. [See online31].

[4] Hassan Aı̈t-Kaci and Roberto Di Cosmo. Compiling order-sorted feature term unification.

PRL Technical Note 7, Digital Paris Research Lab, Rueil-Malmaison, France, December

1993. [See online32].

[5] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In

Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proceedings of the 19th Interna-

tional Joint Conference on Artificial Intelligence, pages 364–369, Edinburgh, Scotland,

UK, July-August 2005. IJCAI’05, Morgan Kaufmann Publishers. [See online33].

[6] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL—a polynomial-time

reasoner for life science ontologies. In Ulrich Furbach and Natarajan Shankar, editors,

Proceedings of the 3rd International Joint Conference on Automated Reasoning, pages

287–291, Seattle, WA, USA, August 2006. IJCAR’06, Springer-Verlag LNAI Vol. 4130.

[See online34].

[7] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9(3):251–280, March 1990. [See online35].

[8] Patrick Cousot. Abstract interpretation. ACM Computing Surveys—Symposium on Mod-

els of Programming Languages and Computation, 28(2):324–328, June 1996. Tutorial

summary:[See online36].

[9] Richard Fikes, Patrick Hayes, and Ian Horrocks. OWL-QL—a language for deductive

query answering on the Semantic Web. Journal of Web Semantics, 2(1):19–29, December

2004. [See online37].

[10] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive

closure. In Proceedings of the 12th Annual Symposium on Switching and Automata The-

ory, SWAT’71, pages 129–131, Washington, DC, USA, 1971. IEEE Computer Society.

[See online38].

29
http://wambook.sourceforge.net/

30
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

31
http://www.hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf

32
http://www.hassan-ait-kaci.net/pdf/PRL-TN-7.pdf

33
http://www.ijcai.org/papers/0372.pdf

34
http://www.informatik.uni-bremen.de/˜clu/papers/archive/ijcar06.pdf

35
http://www.sciencedirect.com/science/article/pii/S0747717108800132

36
http://www.di.ens.fr/˜cousot/AI/IntroAbsInt.html

37
http://www.sciencedirect.com/science/article/pii/S1570826804000137

38
http://rjlipton.files.wordpress.com/2009/10/matrix1971.pdf

May 2013 Page 22 / 24

http://wambook.sourceforge.net/
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://www.hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
http://www.hassan-ait-kaci.net/pdf/PRL-TN-7.pdf
http://www.ijcai.org/papers/0372.pdf
http://www.informatik.uni-bremen.de/~clu/papers/archive/ijcar06.pdf
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.sciencedirect.com/science/article/pii/S1570826804000137
http://rjlipton.files.wordpress.com/2009/10/matrix1971.pdf

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

[11] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The RacerPro knowledge

representation and reasoning system. Semantic Web Journal, 1:1–11, March 2011. [See

online39].

[12] Volker Haarslev and Ralf Möller. RACER system description. In Rajeev Gore, Alexan-

der Leitsch, and Tobias Nipkow, editors, Proceedings of the 1st International Joint Con-

ference on Automated Reasoning, pages 701–706, Siena, Italy, June 2001. IJCAR’01,

Springer-Verlag. [See online40].

[13] Charles Antony Richard Hoare. Algorithm 63: Partition, Algorithm 64: Quicksort. Com-

munications of the ACM, 4(7):321–321, July 1961. [See online41].

[14] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. Journal of

Automated Reasoning, 39(3):249–276, July 2007. [See online42].

[15] Yevgeny Kazakov. Consequence-driven reasoning for horn SHIQ ontologies. In Craig

Boutilier, editor, Proceedings of the 21st International Conference on Artificial Intelli-

gence, pages 2040–2045, Pasadena, CA, USA, July 2009. IJCAI’09, Association for the

Advancement of Artificial Intelligence. [See online43].

[16] Yevgeny Kazakov, Markus Krötzsch, and František Simančı́k. Unchain my EL reasoner.

In Riccardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev, editors, Proceed-

ings of the 24th International Workshop on Description Logics, Barcelona, Spain, July

2011. DL’11, CEUR Workshop Proceedings. [See online44].

[17] Michael J. Lawley and Cyril Bousquet. Fast classification in Protégé: Snorocket as an

OWL 2 EL reasoner. In Thomas Meyer, Mehmet A. Orgun, and Kerry Taylor, editors,

Proceedings of the 2nd Australasian Ontology Workshop: Advances in Ontologies, pages

45–50, Adelaide, Australia, December 2010. AOW’10, ACS. [See online45].

[18] Zohar Manna and Richard Waldinger. Fundamentals of deductive program synthesis. In

Alberto Apostolico and Zvi Galil, editors, Combinatorial Algorithms on Words, NATO

ISI Series. Springer-Verlag, 1991. [See online46].

[19] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for description

logics. Journal of Artificial Intelligence Research, 36(1):165–228, September 2009. [See

online47].

[20] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A highly-efficient OWL rea-

soner. In Ulrike Sattler and Cathy Dolbear, editors, Proceedings of the 5th International

Workshop on OWL Experiences and Directions, Karlsruhe, Germany, October 2008.

OWLED’08, CEUR Workshop Proceedings. [See online48].

[21] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.

Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, June 2007.

This is a summary; full paper: [See online49].

39
http://www.semantic-web-journal.net/sites/default/files/swj109 3.pdf

40
http://www.racer-systems.com/technology/contributions/2001/HaMo01e.pdf

41
http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf

42
http://link.springer.com/article/10.1007/s10817-007-9079-9

43
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf

44
http://ceur-ws.org/Vol-745/paper 54.pdf

45
http://krr.meraka.org.za/˜aow2010/Lawley-etal.pdf

46
http://citeseer.ist.psu.edu/manna92fundamentals.html

47
https://www.jair.org/media/2811/live-2811-4689-jair.pdf

48
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf

49
http://pellet.owldl.com/papers/sirin05pellet.pdf

May 2013 Page 23 / 24

http://www.semantic-web-journal.net/sites/default/files/swj109_3.pdf
http://www.racer-systems.com/technology/contributions/2001/HaMo01e.pdf
http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf
http://link.springer.com/article/10.1007/s10817-007-9079-9
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://ceur-ws.org/Vol-745/paper_54.pdf
http://krr.meraka.org.za/~aow2010/Lawley-etal.pdf
http://citeseer.ist.psu.edu/manna92fundamentals.html
https://www.jair.org/media/2811/live-2811-4689-jair.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf
http://pellet.owldl.com/papers/sirin05pellet.pdf

A ÏT-KACI, H.; AMIR, S. Classifying and Querying Very Large Taxonomies

[22] Andrew Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of

Edinburgh, Edinburgh, Scotland, UK, 2010. [See online50].

[23] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–

356, 1969.

[24] Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 reasoning in-

frastructure. In Lora Aroyo, Grigoris Antoniou, Eero Hyvnen, Annette ten Teije, Heiner

Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors, Proceedings of the 7th Ex-

tended Semantic Web Conference, pages 431–435, Heraklion, Greece, May-June 2010.

ESWC’10, Springer-Verlag. [See online51].

[25] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System descrip-

tion. In Ulrich Furbach and Natarajan Shankar, editors, Proceedings of the 3rd Inter-

national Joint conference on Automated Reasoning, pages 292–297, Seattle, WA, USA,

August 2006. IJCAR’06, Springer-Verlag. [See online52].

[26] Henry S. Warren Jr. A modification of Warshall’s algorithm for the transitive closure

of binary relations. Communications of the ACM, 18(4):218–220, April 1975. [See

online53].

[27] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12,

January 1962.

[28] Virginia Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. University

of California at Berkeley and Stanford University, 2011. [See online54].

Acknowledgements: The authors wishes to thank Mohand-Saı̈d Hacid for his kind proof-reading and

comments. All remaining mistakes, if any, are the authors’ responsibility.

50
http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf

51
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf

52
http://www.cs.ox.ac.uk/Ian.Horrocks/Publications/download/2006/TsHo06a.pdf

53
http://dl.acm.org/citation.cfm?id=360746

54
http://www.cs.berkeley.edu/˜virgi/matrixmult.pdf

May 2013 Page 24 / 24

http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf
http://www.cs.ox.ac.uk/Ian.Horrocks/Publications/download/2006/TsHo06a.pdf
http://dl.acm.org/citation.cfm?id=360746
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf

C E D A R

Technical Report Number 2
Classifying and Querying
Very Large Taxonomies

Hassan Aı̈t-Kaci and Samir Amir

May 2013

	Introduction
	The State of the Art
	Our Method
	``Just the Facts, Ma'am!''
	Classification
	Querying
	Discussion

	Implementation
	Detecting Cycles
	Decoding

	Conclusion
	The CEDAR Taxonomic Reasoner Evaluation Tool

