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Abstract

For a triplestore, scalability and high-performance are of the essence. This study

examines the scalability and performance of existing triplestores by attempting

to reproduce the results reported by their designers. An experiment platform

called CedExP was built to test triplestores based on the Hadoop/MapReduce

architecture. This initial report focuses on two native triplestores SHARD and

HadoopRDF. We ran several experiments both on cloud and non-cloud config-

urations, increasing the number of nodes (virtual machines), and using various

optimization techniques. It was expected that such experiments could reproduce

the published results, or even produce better results. Unfortunately, the results

could not be reproduced and, in some cases, the results were utterly disappoint-

ing. A huge difference was observed between the claimed results and the ones

that were produced in this work. The details of all our experiments are presented,

analyzed, and discussed. Based on the experience gained in this study and the

various observations we could make, we are now planning future work devel-

oping our own high-performance triplestore for handling extremely large dataset

and improve a few design aspects of Hadoop.
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1 Introduction

The Internet has changed the way we see the world and communicate. It has given

rise to the notion of “global village,” which has brought billions of users into the same

topological space. Internet users can now store various types of data such as profiles,

images, music, business information, and other information in hundreds of thousands

of repositories that are hosted in large premises distributed over the Internet, called

data centers. In addition, the number of Internet users has been increasing exponen-

tially. As a result, people are becoming heavily dependent on various technologies

(e.g., smart phone, smart house, etc.) which are flooding such repositories with vari-

ous types of data. Consequently, storage-size requirements in these data centers have

been exploding.

In fact, the current state of affairs was predictable, and so is the future. Zikopolous

et al. [24], for example, estimate that while we are dealing today with terabytes (1012

bytes) of data, we are soon to deal with “brontobytes” since by 2020 the data size

will reach “zettabytes,” and in the subsequent decade it will reach “yottabytes.”1 ,2

Besides, the statistics speak clearly for themselves: Facebook generates 500 terabytes

of data everyday;3 and Twitter alone generates 7 terabytes of data per day.4 This clearly

indicates that today’s predictions will be tomorrow’s reality.

The sheer explosion of data size has given rise to the notion of “Big Data.”5 All of a

sudden, this has become a primary concern for the data-management software service

providers. The main challenges these service providers are facing regarding Bid Data

are how they should be (1) managed, (2) queryed, and (3) analyzed. To add to the

complication, alongside being of enormous size, data are now linked.6

Under these circumstances, many organizations today are pressed to move from the

traditional unconnected relational data silo approach (e.g., isolated relational data stor-

age) to linked-data based storage (i.e., interconnected data over the Internet). With this

increasing trend, Semantic Web (SW) technologies have gained popularity for han-

dling Linked Data.7 In particular, the Resource Description Framework (RDF) offers

a graph-based model to represent, store, and query SW linked data.8 As a result,

there have been several systems designed specifically for handling large amounts of

RDF data in the form of so-called “triples.”9 This has then given rise to the notion of

“triplestore”—a repository containing RDF triples.10

This technical report is an initial account of our investigation of existing triplestores.

For conducting our experiments, we selected triplestores to be evaluated with respect

1The (unofficial) prefixes “zetta” and “yotta” mean 10
21 and 10

24 respectively. Both zettabytes and

yottabytes are data sizes in the realm of so-called “brontobytes” which range from 10
15 to 10

27 bytes.
2
http://en.wikipedia.org/wiki/Unit prefix#Unofficial prefixes

3
http://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/

4
https://blog.twitter.com/2010/measuring-tweets

5
http://en.wikipedia.org/wiki/Big data

6
http://en.wikipedia.org/wiki/Linked data

7
http://en.wikipedia.org/wiki/Semantic Web

8
http://en.wikipedia.org/wiki/Resource Description Framework

9
http://www.w3.org/TR/rdf-concepts/#section-triples

10
http://en.wikipedia.org/wiki/Triplestore
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to two attributes: (1) scalability; and, (2) performance—in particular, regarding query

processing time. The essential motivation for this study has been to try and reproduce

the results officially published for triplestores. The experiments reported in this doc-

ument focus on the SHARD [20] and HadoopRDF triplestores [11]. There are other

triplestores that we intend to experiment with as well, such as Jena-Hbase [12], Jena

TDB,11 OpenLink’s Virtuoso,12 and RDF3X,13 to name a few. But this will be done in

a forthcoming study.

This report is organized as follows. In Section 2, we start with an overall summary of

the roadmap of our experiments. Then, in Section 3, we give a description of some

fundamental concepts. Section 4 describes the tools and technologies that we used in

our experiments. In Section 5, we describe CedExp, the experimental platform that we

built in order to carry out our study for the CEDAR project.14 In Section 6, we present

the results of our data generation experiments. In Section 7, we describe N3 Analyzer,

an extension of the SHARD triplestore, which we built to palliate shortcomings as

we experiemented with SHARD. The results of queries are presented and analyzed

in Section 8. Section 9 describes the gap between expectations and reality. Finally, a

conclusion is drawn and future work is presented in Section 10. We added an appendix

where, in Section A, we summarize our experimental trek with a storyline recounting

how we proceeded through the details of our study. We thought that this might be

instructive for anyone considering investing time and effort in similar pursuits. Also,

in Section B, we give the script we used for segmenting our datasets.

2 Experiment Roadmap

The experiment consists of two main parts. In the first part, experiments seek to find

a high-performance RDF triplestore that can be used in the second part. The second

part of experiments is to try and optimize the performance of the selected triplestore in

terms of querying big data over a set of concepts, corresponding clauses, and modifiers,

by coupling a T-Box and an A-Box. The second part is our future work and therefore

has not been detailed in this report.

The first part of our experiment comprises four phases. In the first three phases the

triplestores are tested, the results are structured and analyzed, and compared with the

publicly available results produced by these triplestores. The final phase of the experi-

ment is comparing the performance of these triplestores and select the best candidate.

The remainder of this report goes through the details of this first part of our experiment.

11
http://jena.apache.org/documentation/tdb/

12
http://virtuoso.openlinksw.com/

13
https://code.google.com/p/rdf3x/

14
http://cedar.liris.cnrs.fr/
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3 Preliminaries

The section describes the basic concepts related to the experiments reported in this

paper. The concepts include Big Data, Linked Data, and Blinked Data.15

3.1 Big Data

The term “Big Data” applies to information that cannot be processed nor analyzed us-

ing traditional database processes or tools [24]. The size of such Big Data is massive,

ranging from hundreds of gigabytes to pettabytes and thus storing, searching, sharing,

visualizing, and analyzing Big Data is highly challenging. Big Data has four charac-

teristics: volume, velocity, variety, and veracity which are proposed in the literature—

such as [4], [18], and [24]. The definitions of these characteristics given below are

summarized from the cited literature and could be called “The Four Vs”:

• Volume—the size of the dataset.

• Variety—different types of data format.

• Velocity—speed at which the data is arriving, stored, and retrieved.

• Veracity—accuracy, reliability, or certainty. Veracity ratifies that the datasets do

not contain inconsistent, ambiguous, duplicate, and deceptive data.

3.2 Linked Data

Linked Data is simply about using the Web to create typed links between data from

different sources [3]. It is a means of publishing “web-native” data using standards

like HTTP, URIs and RDF [4]. Bizer et al. [3] define Linked Data as data published

on the Web in such a way that is machine-readable, with meaning explicitly defined,

linked to other external data sets, and can in turn be referenced through links from

other external datasets. Linked Data uses the RDF format [13].

In order to publish Linked Data on the web, Berners-Lee [1] proposed a set of princi-

ples. They are:

• Data must be named with a valid URI.

• A valid URI should associated with HTTP.

• Provide useful information about a thing when its URI dereferenced, leveraging

RDF.

• Include RDF statements that link to other URIs so that they can discover related

things.

15We coined the word “Blinked Data” to designate “Big Linked Data.”
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3.3 Blinked Data

We introduce a new phrase: Blinked Data. The term “Big Data” is generic in that

it denotes large volumes of data regardless of their format (relations, triples, semi-

structured, etc., . . . ). Conversely, the term “Linked Data” denotes RDF-triple data

whose serialization format can be any of: RDFa (Resource Description Framework

attribute), XML-notation RDF, Notation 3 (N3), N-Triples, and Turtle. Linked Data,

on the other hand, is not necessarily big. So, in order to refer specifically to “Big

RDF-based Data,” we combine the term big and linked data and form the new term—

“Blinked Data”—to denote big datasets consisting of RDF triples.

4 Tools and Technologies

This section provides a brief description of the technologies include SHARD and

HadoopRDF triplestores, Hadoop, MapReduce programming model, SPARQL, and

RDF that are used in our experiment.

4.1 Hadoop

The ApacheTM Hadoop R© [16] is an open source software framework for process-

ing a large dataset that is distributed across a wide range of nodes. Hadoop is an

Apache project orginated from Google’s MapReduce [14] and the Google File System

(GFS) [7]. Hadoop was created by Doug Cutting16 at the time he was an Yahoo em-

ployee and his co-developer Mike Cafarella17, as an open source project hosted by the

Apache Software Foundation [6].

Hadoop is designed to scale up from single servers to thousands of machines, each

offering local computation and storage [9]. It has been accredited the future technology

for handling big data. The software framework was developed by decomposing it

into three different projects: Hadoop Common, Hadoop Distributed File System, and

Hadoop MapReduce. These packages are briefly described below.

• Hadoop Common: A set of utilities that supports Hadoop’s other modules [6].

• Hadoop Distributed File System (HDFS): This is the central component of

Hadoop. It is the flagship file system of hadoop which was designed to store

large files with streaming data access pattern, running on clusters on commodity

hardware [23]. HDFS comprises the followings:

– Namenode: It is the only masternode in a cluster,

– Datanodes: These are child nodes controlled by the master node,

– HDFS Client : It allows user applications to access to their files,

16
http://en.wikipedia.org/wiki/Doug_Cutting

17http://web.eecs.umich.edu/˜michjc/bio.html
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– CheckpointNode: This node is also known as secondary namenode. Not

to be confused that the secondary namenode replaces the namenode upon

its failure. The main task of CheckpointNode is storing the file system

metadata entail namespace image of the file system and journal which is

the wtite-ahead commit log for the changes to the file system that must be

persistent [21]. The CheckpointNode periodically downloads the metadata

and journal from the active namenode, combines them , and returns them

to namenode.

– BackupNode: It stores the image of the latest journal. It downloads the

latest journal from the namenode and persist them into its own (local) stor-

age directory. Notably, namenode may play a role of either BackupNode

or CheckpointNode.

HDFS stores unstructured data into blocks. In HDFS, A input file is decomposed

into blocks of a specific size and then these blocks are stored in the datanodes.

The size of each block is 64 MB by default however the size can be customized.

• Hadoop MapReduce: A YARN-based system for parallel processing of large

datasets [6].

Apache Hadoop is the base technology used in our experiment for processing MapRe-

duce jobs.

4.2 MapReduce

MapReduce [14] is a programming model pioneered by the Google Inc.18. It has two

distributions: Google’s MapReduce provided by the Google Inc. and Hadoop MapRe-

duce by the Apache Software Foundation. There is no known difference between these

two versions however one simple distinction is Google’s MapReduce is proprietary

whereas the Apache’s distribution is open source. Notably, we use Hadoop MapRe-

duce for our experiment.

MapReduce is a simple programming model, yet not too simple to express useful pro-

gram in [23]. MapReduce programming model is very much similar to the traditional

forking and merging technique. Typical functional programming languages such as

LISP [15] and Haskell [5] implement the MapReduce programming model. Essen-

tially, the notion of this programming model is rooted long before it was implemented

in Haddop framework.

MapReduce works by decomposing the processing into map and reduce phases that

are implemented as map() and reduce() functions. Hadoop framework can ex-

ecute Map and Reduce functions written in different languages such as Java [17],

Python [22], etc., . . . During the map phase, the mapper takes the input data from the

user in the form of (Key, Value) pairs and produces a set of intermediate (Key,

Value) pairs. The intermediate pairs are essentially the map outputs. These outputs

are then shuffled by the MapReduce framework so that the resulting values associated

18https://www.google.com/about/
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with the same key are grouped together and another set of (Key, Value) pairs are

assigned to each group. Up to that point, the process produces partitioned answer sets.

Following that, the MapReduce framework passes these sets to its “reducer” to merge

them to form the final output.

MapReduce is simple enough for small number of inputs however, the performance

might be in question if the framework has to process a large number of files especially

if the reducers need to merge a large number intermediate outputs.

4.3 Resource Description Framework

The Resource Description Framework (RDF) [13] is the language recommended by

the World Wide Web Consortium (W3C) for modeling information about the resources

published in the Web (metadata). The resources are identified using qualified resources

which is an URI containing ‘#’ ending with an optional fragment identifier. The re-

source in RDF does not necessarily have to be accessible via the Hypertext Transfer

Protocol (HTTP). However, a bare URI (without a ‘#’) can be Internet-accessible using

the HTTP “GET” method.

The fundamental element of RDF is the triple which is also known as an RDF state-

ment. A triple is composed of three parts: subject, object, and predicate. A subject

and object can be a resource, a literal, or a blank node. A literal is a concrete value

and a blank node represents an anonymous resource (i.e., corresponding to no URI nor

literal). A subject can be the object of another triple. Contrary to subjects and objects,

predicates cannot blank nodes, except in Notation 3 [2]. A predicate (also called prop-

erty) links a subject ro an object. A set of so-linked RDF triples comprises an RDF

graph.

There are three different types of concepts in RDF. Fundamental concepts include

RDF:Resource,RDF:Property, and RDF:Statement. Schema-definition con-

cepts make up yet another type as defined by RDF vocabularies. Common ones are

utility concepts that include data structures such as rdf:Bag, rdf:Container,

etc., . . . Such utility concepts are optional.

4.4 SPARQL

SPARQL [8] stands for “SPARQL Protocol And RDF Query Language” [8]. It is

a language for querying and manipulating RDF datasets. A typical SPARQL query

consists of a set of triple patterns meant to match RDF triples. A triple pattern is similar

to an RDF triple except that the subject, object, and predicate can be a variable [10].

In that manner, SPARQL retrieves desired RDF data from structured as well as semi-

structured datasets. A “join” is expressible as several triple patterns sharing a veriable.

Since objects and subjects of triples car be URIs, this enables performing complex

queries that may involve joins over distributed RDF databases.

The basic constituents of a SPARQL statement include a prefix, a dataset definition

clause, a result clause, a query pattern, and a query modifier. A prefix declaration is

declaring the URIs (e.g.PREFIX <http://example.com/resources/>). A
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dataset definition declares which database should be queried. A result clause declara-

tion specifies the expected outcomes. Query patterns are essentially the triples patterns

that must be matched by the data being queried. A query modifier dissects, sequences,

and rearranges the outcomes.

SPARQL allows the use of aggregation functions such as SUM, MIN, MAX, etc., and

aggregation clauses such as GROUP BY, HAVING, etc., . . . Such aggregators are used

in for defining complex queries.

4.5 The SHARD Triplestore

SHARD [20] was developed for storing and retrieving RDF data in a distributed envi-

ronment. Its main concern is scalability, which is a limitation of centralized database

management technologies. It is designed as Hadoop/MapReduce repository which

caters for building a distributed and parallel environment for storing and querying RDF

data. Since Hadoop/MapReduce allows any number of worknodes, this means that

scaling up computation to large amounts of data should not be problem. In other words,

the number of computational node could in principle be increased without degrading

performance. SHARD being based on Hadoop/MapReduce technology, it purports to

leverage it for SPARQL query processing.

In SHARD, queries are processed in an iterative manner. This iterative query process-

ing is meant to improve conventional MapReduce functions. In particular, it enables

incremental query processing to bind variables while satisfying query constraints.

Each iteration consists of a MapReduce operation for a single query clause. It first

maps triple data from a dataset onto the clause matching triples and binding the clause

variables and lists all the variable bindings. Then, the subsequent step is to reduce the

list of matched triples where duplicate data are deleted.

Following that is the intermediate query binding step, where variables from the current

clause are bound to values incrementally. Another MapReduce operation is performed

in this intermediate step over both triple data and previously bound variables that were

saved to disk.

At a certain stage of this iteration (say, at the ith step), all ith variables are identified.

The map operation at this stage binds all the variables (if any) that were not seen in

the previous clause. In addition, the map operation rearranges the previous results.

The reduce operation applies a join over the intermediate results continuously until all

clauses are processed and variables satisfying the clauses are bound.

The final step filters bound variable assignments to satisfy the SELECT clause of the

given SPARQL query. The filtering is done during the map step and duplicates are

removed during the reduce step.

4.6 HadoopRDF

HadoopRDF [11] is the other candidate triplestore for the experimentation conducted

in this paper. The main focus of HadoopRDF is to optimize Blinked Data queries. The
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triplestore uses Hadoop, and makes use in particular of HDFS, to store the RDF triples.

The scalability issue is not given the main priority here as HadoopRDF relies entirely

on HDFS for such issues. As for query-processing performance, on the other hand,

since HDFS is not concerned with such issues, HadoopRDF provides its own SPARQL

query optimization. So, besides storing big RDF datasets using HDFS, it offers an

algorithm which determines the best query plan needed to answer a given SPARQL

query based on a cost model .

HadoopRDF optimizes querying using in two phases: Data Preprocessing and Query

Processing. The tasks that are performed at preprocessing step include collecting input

from the dataset, converting the data into a format that is compatible with HDFS (viz.,

Notation 3 [2]), carrying out predicate splitting (PS), and performing predicate-object

splitting (POS). In the latter phase, the input is selected based on a given query, then a

query plan is generated, and the jobs are executed accordingly.

The most interesting features of HadoopRDF are its predicate and predicate-object

splitting. Theses two features play a significant role in compressing the dataset without

needing any CoDec.19 They may be viewed as a particular kind of indexing on triples.

The predicate-split function reads a triple and splits according to its predicate. This

means that all the subjects and objects with the same predicate will be stored in one

same file. For instance, if WorksFor is a predicate of n triples, then a single file (say,

WorksFor-pred) will contain subject/object pairs of all the triples whose predicate

is WorksFor. On the other hand, the predicate-object split function discriminates

triples according to the rdf:type denoting the type of the object. This is called

Predicate-Object Split of Type (POST). If the object of a RDF triple is a literal, then

the literal remains in the file named by the predicate. This split is called POSNT

(Predicate-Object Split of Non Type).

In HadoopRDF, upon launching a query, inputs are selected for the query by an Input

Selector, a component of the MapReduce framework of HadoopRDF. A cost estimator

evaluates the costs by reading the selected inputs against the query launched by a user.

The plan generator provides a plan for the Map and Reduce jobs. Finally, the job

executor carries out these jobs on the datasets stored in the data nodes of the Hadoop

layer of the triplestore.

5 CedExP—The CEDAR Experiment Platform

This section describes the CedExP platform that is developed for the experiments con-

ducted in this experimental research. CedExP is an extensible experiment platform.

The platform has been built by integrating the technologies that have been described

in the previous section. This section provides the detail of the platform with a special

focus on how these technologies have been bundled in CedExP ecosystem. Figure 1

shows the CedExP architecture.

19CoDec stands for “Compression and Decompression.”
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Figure 1: The architecture of the CEDAR experiment platform

5.1 Overview of CedExP

Since CedExP is a pluggable platform, it facilitates integrating software components

whenever it is necessary. It consists of three layers layers: Presentation Layer, Appli-

cation Layer, and Infrastructure Layer. These layers are briefly described below.

• Presentation Layer: This layer provides user interfaces for generating datasets

and querying datasets. The interfaces facilitate users to give inputs for dataset

generation and querying dataset.

• Application Layer: Application layer hosts the applications. It mainly hosts

dataset generation applications and query processing applications. CedExP is

rather a generic platform which facilitates hosting any generator preferred by

the users. Similarly, the users can integrate their preferred query processing

applications in CedExP. One important requirement about CedExP platform is

application should be built using MapReduce programming model because, the

platform is built upon Hadoop technology.

• Infrastructure Layer: This is the bottom layer of the CedExP architecture.

The CedExP infrastructure can be implemented on cloud low cost commodity

hardware and non-cloud on-premise hardware.

The non-cloud CedExP infrastructure is relatively more expensive than the cloud

infrastructure. Figure 1 shows a non-cloud infrastructure implemented on a sin-

gle cluster, but that can be increased upon requirement of the users. Notably, the

figure shows the current implementation of CedExP architecture.

The cloud environment was implemented on the LIRIS cloud20 which is a public

20The Infrastructure as a Service (IaaAS) provider is the Laboratoire d’InfoRmatique en Image et

Systèmes d’information (LIRIS).
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cloud service provider for the Université Claude Bernard Lyon 1 (UCBL).21 We

also implemented cloud based environment on PetaSky Cloud which is another

public cloud service provider to UCBL projects. CedExP cloud-based infras-

tructure is a scalable infrastructure by the virtue of Hadoop. The infrastructure

can be scaled up-and-down by instantiating and suspending virtual machines

(VMs) upon requirement for a job to be processed.

5.2 Configuration of CedExP

This subsection provides the detail of the specifications of technologies that were used

in configuring the CedExP environment. Various technologies were used in three lay-

ers of CedExP architecture. These technologies are listed below:

• Application Layer Specification: CedExP application layer hosts LUBM data

generation application for generating datasets. Besides, this layer hosts two

triples stores SHARD and HadoopRDF for for processing queries on the datasets.

The details of SHARD and HadoopRDF have been provided in Section 4.

Furthermore, the Eclipse Europa 3.3.2 IDE (Integrated Development Environ-

ment) is used for launching the triplestores, modifying the default values of the

parameters, and adding new functionality.

• Presentation Layer Specification: Both SHARD and HadoopRDF provide in-

terfaces for providing inputs more specifically the program arguments. The

LUBM data generation application provides interface for providing inputs for

generating datasets. It is worth noting that, the LUBM data generator comes

with SHARD and HadoopRDF however in CedExP it has been separated since

it also can be used in isolation to these applications.

• Infrastructure Layer Specification: The infrastructure layer of CedExP is

Hadoop based. There is a list of Hadoop vendors distributing open source

Hadoop. The list of major vendors includes Cloudera,22 Hortonworks,23 and

Apache. 24 For the experiments reported in this paper, the open source Apache

Hadoop has been used. The Linux operating system was used as the infrastruc-

ture.

It is worth noting that the hardware detail is missing here. Since we used different spec-

ifications depending on needs, hardware detail is provided in experimentation sections.

While configuring CedExP for SHARD triplestore we encountered a simple configu-

ration error which is explained in the box below along with how it was solved.

21
http://www.univ-lyon1.fr/

22
http://www.cloudera.com/content/cloudera/en/home.html

23
http://hortonworks.com/

24http://hadoop.apache.org/
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Configuration Error While configuring the SHARD framework we encoun-

tered 28 errors relating the jar files of Cloudera Hadoop.

The problem was triggered due to the native Hadoop

jar files were missing in the environment. The system

threw error messages complaining that ‘SHARD’ was

missing required library immediately after

mounting the framework.

Solution The problem was solved by adding the required jar files

in the framework. This problem was fixed permanently

as it was never encountered after the fixation.

6 Dataset Generation Experiments

Data is the central requirement for running queries. In this phase, the goal was to

generate a Blinked dataset containing more than a billion of triples serialized in RDF.

Therefore, the first task performed was generating the university dataset which is large

in size. We reached to this number by running the generator several times and by

changing the default values of parameters. This section gives the details how the goal

was achieved. It is important noting that we used data generation application that

comes along as a package with SHARD triplestore application.

We conducted seven tests to reach the target size of dataset. We used machines with

different specifications. Table 1 gives the specifications of the machines used in gener-

ating the datasets in different sizes. Notably, the data generation tests were performed

on a non-cloud environment.

Data generation test 1 The very first test we ran leaving the default values of the

parameters (hard coded in the application) unchanged except the value of UNIV NUM

parameter which was changed from 1000 to 6000. The program arguments given for

the test were -univ 1 and -onto [lubm]/univ-bench.owl, where -univ

1 denotes the number of the university and univ-bench.owl is the script for the

ontology.25 The test generated a tiny dataset 13 MB in size and containing 14 univer-

sity files with 121,477 RDF triples.

Data generation test 2 The first test was the simplest one. As our goal was gen-

erating a big dataset, we changed the parameters again in second test. Additionally,

we changed the system specification since we needed a better machine. The following

parameters were changed as shown below:

• UNDER COURSE NUM was 100—changed to 200;

• GRAD COURSE NUM was 100—changed to 200;

25We write [lubm] for http://www.lehigh.edu/7Ezhp2/2004/0401.
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Tests System Information

Test 1 System Name: Ced Exp Sys 1

Intel(R) Core 2 Duo

CPU 2.8 Ghz

32 bit Processor

Linux 32 bit

250 GB SATA HDD

2 GB Main Memory

Test 2 System Name: Ced Exp Sys 2

Intel(R) Core 2 Duo

CPU 3 Ghz

32 bit Processor

Linux 32 bit

250 GB SATA HDD

4 GB Main Memory

Test 3 System Name: Ced Exp Sys 2

Test 4 System Name: Ced Exp Sys 2

Test 5 System Name: Ced Exp Sys 3

Intel(R) Core I3

CPU 3.20 Ghz

64 bit Processor

Linux 64 bit

1 TB SATA HDD

8 GB Main Memory

Test 6 System Name: Ced Exp Sys 3

Test 7 System Name: Ced Exp Sys 3

Table 1: Dataset size and system information
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• RESEARCH NUM was 30—changed to 60;

• DEPT MIN was 15—changed to 30;

• DEPT MAX was 25—changed to 50;

• UNIV NUM was 6000—changed to 1200.

The test generated second dataset of size 35 MB which contains 41 files containing

339318 RDF triples. Interestingly, although the number of university was reduced in

this test, the number of triples were generated more than the previous university.

Data generation test 3 Our aim is to create much larger dataset than it was created

in the previous tests. Thus, we continued to carry out the data generation test. Like

the previous tests, we changed the values of parameters for this test. The values of

parameters were modified as shown below:

• UNDER COURSE NUM was 200—changed to 1000;

• GRAD COURSE NUM was 100—changed to 1000;

• DEPT MIN was 30—changed to 150;

• DEPT MAX was 50—changed to 250;

• RESEARCH NUM was 30—changed to 300;

• UNIV NUM was 1200—changed to 60000.

As in the previous test, changing value of university had a very little influence, however

the overall performance of the generator was better than the previous test. Almost one

and half million triples were generated in this test. The dataset was 181 MB in size

containing 216 files.

Data generation test 4 We continued changing parameter until the target size was

not produced. The following values of the parameters were used for this test.

• UNDER COURSE NUM was 1000—changed to 2000;

• GRAD COURSE NUM was 1000—changed to 2000;

• DEPT MIN was 150—changed to 300;

• DEPT MAX was 250 changed to 500;

• RESEARCH NUM was 300—changed to 600;

• UNIV NUM was 1200—changed to 60000.

We observed that, with these parameters, the size of triples generated in this test is

slightly more than double of the previous test. The size of the dataset is 401 MB that

contains 337 files containing 3.2 million triples.
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Data generation test 5 In this test, the new values were set for the parameters. The

new values for this test are given below:

• UNDER COURSE NUM was 2000—changed to 10000;

• GRAD COURSE NUM was—changed to 20000;

• DEPT MIN was 150—changed to 1500;

• DEPT MAX was 250—changed to 2500;

• RESEARCH NUM was 600—changed to 3000;

• UNIV NUM was 12000—changed to 60000.

While running this experiment, we encountered a crash due to a “starvation error.” The

boxes below explains the root cause of the error and how it was solved.

Starvation Error According to our analysis, this crash happened due to

starvation of elements. We experienced it when we in-

creased the value of DEPT MIN and DEPT MAX. We believe

SHARD’s internal design flaw was the main reason for the

element starvation. We diagnosed the problem at the very

first step to find the actual cause rather than speculating it.

Our first thought was while fetching tokens if the system

does not find element then SHARD StringTokenizer

function throws this exception . Nevertheless, we found

that each Process open Input and Output Stream

(two OutputStream (standard output and er-

ror output)and one InputStream). However, the

input/input stream number is limited. Consequently,

when the SHARD system generates too many N3 files, the

open of the Process crash.

Solution We changed SHARD’s waitForEnd() function (allow-

ing to wait for the end of the all the processes) for closing

correctly the Input/Output stream open. Then, we

caught the exception lunch by a process when it can not

open the Stream for waiting the end of already lunched

process.

The test generated dataset of size 1329 MB containing 1361 files. Unfortunately, the

number of triples could not be counted due to another error which was thrown during

running the triple counter. We tried to resolve this issue however it could not be solved

due to unknown reason, the only cause we could assume was the size of data could not

be handled by the application. Then, we tried an alternative way to solve this issue.

The alternative path was chosen to save the time however it was effective enough to

count the triples. The following steps show how the triples was counted:
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• Step 1 : A Linux shell-script was written to count the number of triples con-

tained in a file.

• Step 2 : The number of triples was multiplied by the number of files. The result

produced through this multiplication is the total number of triples generated by

the test.

This test generated 12.8 million triples.

Data generation test 6 Since the dataset was far smaller than we aimed, we con-

tinued generating triples. We found that the parameters that essentially influences the

outcome are: DEPT MIN and DEPT MAX. Therefore, we changed the current values

of all other parameters to their default value. The details of the parameter changes are

given below:

• UNDER COURSE NUM was 10000—changed to 100;

• GRAD COURSE NUM was 20000—changed to 100;

• DEPT MIN was 150—changed to 1500;

• DEPT MAX was 250—changed to 2500;

• RESEARCH NUM was 3000—changed to 30;

• UNIV NUM was 60000—changed to 6000.

The size of the dataset produced by this test is 8260 MB which contains around 100

million triples. The number of triples was calculated the same way it was calculated

in test 5.

Data generation test 7 Test 6 generated a fairly large amount of triples however

the number was not yet the one we targeted to achieve. Therefore, we investigated

data generation application source code to find the reason why SHARD is not produc-

ing a big dataset with a billion of triples even though the values of parameters were

changed several times. We found that, the change of values of parameters in source

code is not sufficient. The values of the parameter of program argument should also be

changed. Therefore, we changed the parameter -univ 1 in original argument line -univ

1 -onto http://www.lehigh.edu/7Ezhp2/2004/0401/univ-bench.owl to -univ 6000. The

remaining configuration was same as test 6.

Finally, SHARD produced an impressive result. More than one and half billion triples

were generated with the size 220 GB which is labeled C UdataSet . After this number,

we understood why the previous tests had failed to generate a Big Data. The dataset

was stored on disk for further experiments. Table 2 summarizes the outcomes of all

the data generation tests that have been conducted until now.

6.1 Analysis

In this subsection, we analyze the performance of data generation package of SHARD

triplestore application. SHARD’s data generation package is sustainable for a small
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Tests Size of Dataset (in MB) No. of Triples

Test 1 13 121477

Test 2 35 339318

Test 3 181 1.4 Million

Test 4 337 3.2 Million

Test 5 1329 12.8 Million (App.)

Test 6 8260 79.6 Million (APP.)

Test 7 220160 1600 Million (App.)

Table 2: Outcomes of the dataset generation tests

and medium scale dataset generation however, we experienced several crashes while

trying to generate large scale dataset. The generator was slightly modified to generate

the big dataset containing more than a billion triples. We conclude that the updated

version of SHARD is relatively more sustainable than the original one for generating

large scale datatsets.

The performance of SHARD data generator with respect to data generation time was

satisfactory yet again for generating small and medium scale dataseta. Nevertheless,

for the large-scale dataset, it consumed an excessive amount of time. To be specific,

for test 7 it took around 40 hours. The data generation time should be optimized.

6.2 An Open Issue

The data generation package of the SHARD framework was not able to count number

of generated triples in dataset without launching a query. In SHARD, the triple counter

class is contained in the SHARD triplestore package and this is the reason the triples of

a newly generated dataset could not be counted immediately. From our experience, this

design of SHARD’s data generation system is not always feasible especially if an user

wants to know the number of generated triples right after performing the generation

operation. We found this fact while we were experimenting SHARD’s data generator.

If we wanted to know the number of generated triples , we had no option but to launch a

query. More importantly, if the dataset is big, it takes several hours to know the amount

of triples after launching a query. If the query processing application crashes then the

users will never know the number. In our experiment 5, 6, 7, we were experiencing a

crash (which we have reported in the previous section) while processing queries due

to the large size of the dataset and therefore, we had to choose an alternative way to

count the triples.

Based on these observations, we strongly suggest that the triple counter of SHARD

should be integrated with its data generation application as well, rather than only

bundling it with its triplestore application.
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7 N3 Analyzer—An Extension of SHARD Data Generator

In order to address the open issue described in section 6.2, we developed an analyzer

called the “N3 Analyzer.” This analyzer is integrated with the SHARD data generator.

As as result, the data generator can provide a specified number of triples in the gener-

ated dataset. The UML class diagram in Figure 2 shows the extension of the SHARD’s

data-generation application.

Figure 2: Class diagram for the extended SHARD data generation application

The class diagram shows that the university’s data-generation package is composed of

the original data-generation package, and our N3-Analyzer package extending it. The

package contain the Triple.java class, which contains the method for counting the

triples. In addition to designing our N3 Analyzer to count triples, we added another

functionality (the “analyzer” per se), which can generate specifically scripted RDF

graphs from the datasets. The N3Reader.java class specifies how to generate a

script by reading the graphs contained in the dataset. The key purpose of this capability

is to generate RDF graphs conforming to the specific nature of an ontology. Figure 2

shows the classes of N3 Analyzer package.

8 Experimentation with Triplestores

In this section, we provide experiment results. The experiments were performed both

in non-cloud and cloud physical environment. We used fourteen queries provided by

LUBM.26 The queries were studied to identify the number of joins, variables, and

triple patterns exist in these queries. Table 3 shows the constituents of the queries.

26
http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
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Queries No. of joins No. of variables Triple pattern

Query 1 1 1 2

Query 2 5 3 6

Query 3 1 1 2

Query 4 4 4 5

Query 5 1 1 2

Query 6 0 1 1

Query 7 3 2 4

Query 8 4 3 5

Query 9 5 3 6

Query 10 1 1 2

Query 11 1 1 2

Query 12 3 2 4

Query 13 1 1 2

Query 14 0 1 1

Table 3: List of joins and variables in LUBM Queries

8.1 Experimentation with the SHARD Triplestore

The SHARD triplestore was experimented on both cloud and non-cloud infrastruc-

tures. The non-cloud infrastructure provides local mode fore processing jobs whereas

the cloud environment distributed mode for running jobs. These two modes are briefly

explained below:

• Local Mode: It provides a non-distributed mode of experiment where data is

stored into and read from the stand-alone machine. Typically, local mode is

provided by a single machine cluster.

• Distributed Mode: This mode provides a distributed runtime environment for

processing queries. In this mode, data are distributed across several nodes on

clusters.

The SHARD triplestore processes queries in three steps. They are as follows:

• Data Cashing: The query processing starts with copying the data from the lo-

cal source (HDD) to the triplestore. In distributed mode, data is cached in the

namenode. From the cache, the data is distributed to the cashes of child nodes.

Child nodes are also called compute node. The distributed caching of data is

managed by the HDFS system.

• Storing Intermediate Result: During query processing SHARD produces in-

termediate result (See section 3 for more detail). The intermediate results persist

onto disk.

• Storing Result: The final outcome is produced in final step and persist onto

disk.
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Since the SHARD triplestore copies data from a local source to HDFS for each new

query, the machine where HDFS is installed should have enough space. It is worth

noting that in SHARD the triplestore removes the cached data after completing the

query processing.

8.1.1 Experimentation with SHARD—Phase I

In this subsection, we present and analyze the results of the experiments that were

carried out in this phase. All experiments were performed on a non-cloud infrastruc-

ture. The queries were processed in local mode. The key purpose of experimenting

SHARD on a non-cloud infrastructure was to investigate the performance of SHARD

in a standalone machine.

The Hadoop cluster in our non-cloud infrastructure contains only one node which in

our case is ‘Ced Exp Sys 3.’ This node plays multiple roles include: namenode, datan-

ode, secondary node, and BackupNode.

Query processing tests In the first test, we ran the LUBM queries on C UdataSet

containing 1600 million triples. Unfortunately, the SHARD system failed to process

the queries. It crashed with a Java heap space error. We discuss the reason for this

error, and how we corrected it.

Starvation Error Heap space errors are common in Java based components.

It happens when a component is used on a dataset too

large to. This is what happened when we launched our

query. The Java heap space is the memory of the Java

Virtual Machine (JVM). The JVM gets this memory from

the main memory. While processing any job, if the JVM

lacks memory it requires, then it throws a Java Heap-Space

Error. In our case, the system we used for testing the query

had only 8 GB Random Access Memory (RAM). Thus, the

system obviously could not share memory with the JVM

as required for processing the query. Therefore, the JVM

threw a java.lang.OutOfMemoryError exception.

This error reveals a fact that SHARD heavily relies on main

memory.

Solution Since the exception was thrown due to shortage of memory

required by the JVM to process the queries, we increased

the heap size for the JVM. Additionally, we sliced the

C UdataSet into smaller sizes. Table 4 shows the differ-

ent sizes of the datasets. We wrote a Linux shell-script for

dissecting the various C UdataSet datasets. This script is

provided in Appendix Section B.
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Datasets Size in GB

C UdataSet S1 16

C UdataSet S2 20

C UdataSet S3 30

C UdataSet S4 40

C UdataSet S5 60

C UdataSet S6 75

C UdataSet S7 80

C UdataSet S8 97

C UdataSet S9 116

C UdataSet S10 120

C UdataSet S11 140

C UdataSet S12 160

C UdataSet S13 180

C UdataSet S14 200

C UdataSet S15 220

Table 4: Size of the CEDAR datasets

From the experience we gained in the first test, we decided to run next experiments on

smaller datasets. In this test, the queries were launched on C UdataSet S2 which

is 20 GB in size containing 153.61 million triples. The number of triples increases

after reasoning. The SHARD triplestore carries out reasoning over subClassOf and

subPropertyOf properties. The triplestore application performs reasoning before

processing the queries. The dataset C UdataSet S2 became larger than its original

size after reasoning. The number of triples grew to 179.1 million. The application

processes queries on this newly created dataset. The query response time of this test is

provided in the results and analysis discussion below.

The third test we conducted on the C UdataSet S4 dataset containing 306.9 mil-

lion triples which increased to 358 million triples after reasoning the dataset. The

fourth, fifth, and sixth test was carried out on C UdataSet S5, C UdataSet S7,

and C UdataSet S8which contain respectively 460.4, 613.9, and 767 million triples

(before reasoning), and 536.9, 715.9, and 894.8 million triples after reasoning. We

conducted another experiment on C UdataSet S9. However, we experienced a fatal

error which could not be solved until later.

Query results and analysis Table 5 presents the query response times (in millisec-

ond ) of the queries that were carried out on different datasets in Phase I.

To provide a comprehensive visualization of the response times, the results are pre-

sented in a histogram. Figure 3 presents the histogram. This figure shows that response

time of queries 14 and 6 are almost the same and the lowest of all. Query 2 takes the

maximum time to be processed. The response times of Queries 4, 7, 8, and 9 are less

than that of Query 2. Nevertheless, these queries consume a significant amount of time
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Queries C Udata- C Udata- C Udata- C Udata- C Udata-

Set S2 Set S4 Set S5 Set S7 Set S8

Query 1 349031 664987 986942 1332158 1676712

Query 2 1489547 2846984 4319285 5916312 7529019

Query 3 351541 675960 996063 1338456 1680696

Query 4 1300913 2535974 3843819 5197707 6607025

Query 5 352580 665793 995289 1337403 1683091

Query 6 144257 274298 410428 547540 687070

Query 7 1134418 2172838 3366242 4576603 5845316

Query 8 1284526 2496910 3829507 5202318 6594931

Query 9 1173616 2244575 3376164 4518199 5683806

Query 10 354639 671969 996184 1347573 1679463

Query 11 350556 670777 1008015 1355364 1684884

Query 12 777031 1480790 2201811 2996355 3718997

Query 13 301501 568546 846867 1150081 1420353

Query 14 148243 277254 408406 551538 684580

Table 5: Response times for the queries processed in the non-cloud infrastructure

Figure 3: Comparison of response time for queries in the non-cloud infrastructure

for processing. The response time of Queries 1, 3, 5, 10, 11, and 13 is noticeably lower

than those of other queries, except those of Query 6 and Query 14, which it exceeds.

Our analysis reveals a few interesting aspects of these results. For example, the re-

sponse time depends heavily on the nature of the queries. Taking Query 2 for exam-

ple: it has 5 joins, 6 triples patterns, and 3 parameters—which indicates the complexity

level of this query is high. On the other hand, Queries 6 and 14 have no join. The re-

sponse time of Query 2 is four times those of Queris 4 and 16. However, Query 9 has
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the same number of triple patterns, variables, and join as Query 2, but the response time

of this query is slightly lower than that of Query 2. Furthermore, Query 4, 7, and 8 have

almost the same specification; hence, the response times of these queries are nearly the

same with minimal difference. The remaining queries including Queries 1, 3, 5, 10,

11, and 13, have the same specification; therefore, their response times are nearly the

same.

The fact that the nature of a query determines the response time is an observable reality.

During experiments, we have observed that the patterns of response time of queries for

all datasets are the same. To clarify more, the pattern of response time for Query 2 is

same for all datasets. The response time of this query is always the highest because it

is the most complex query of all .Conversely, the response times of Query 4 and 6 are

the lowest for all experiments. The reason is evident: there is no join in these queries.

Another important observation is the positive correlation between the size of the dataset

and the complexity level of the queries. The response times of complex Queries 2, 4, 7,

and 8 increase significantly with the size of the dataset. The response time of Query 2

for C UdataSet S4 was significantly more than the response time of the same query

for C UdataSet S2. The response time of simple queries increase with the incre-

ment of the size of the dataset however, the increment rate is minimal. Figure 8 shows

that the response times of Queries 1, 3, 5, 6, 10, 11, 13, and 14 increase moderately

with the size of the dataset.

8.1.2 Experimenting with SHARD—Phase II

This section gives the results of the experiments conducted in the PetaSky cloud in-

frastructure.

Two experiments were launched on C UdataSet S9 which led to the same fatal er-

ror encountered before on that same dataset. We concluded that the non-cloud single

machine cluster host cannot handle this large dataset. There were two options we could

choose: (i) assembling a new host with a richer specification; or, (ii) a scalable infras-

tructure that could handle a large scale dataset. Since nowadays a scalable infrastruc-

ture is cost-effective, we preferred a cloud-based scalable infrastructure over the other

option. Another reason for selecting a cloud-based infrastructure was performance.

Since it facilitates invoking instances on demand, it can optimize the performance of

the SHARD triplestore.

In this phase, the experiment was moved to the cloud-based infrastructure provided

by PetaSky—a project of handling extremely large dataset [19]. The infrastructure

provides distributed environment for experiments. The PetaSky cloud infrastructure

comprises one cluster consisting of three instances PETASKY-1, PETASKY-2, and

PETASKY-3, all with the same specification, except concerning the storage. PetaSky

uses Serial Advanced Technology Attachment (SATA) storage technology.27 The

SATA storage of PETASKY-1 is 1 TB; the storage of PETASKY-2 and PETASKY-3

is 300 GB. The other details of these instances is given below.

27
http://en.wikipedia.org/wiki/Serial ATA
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• Processor: Intel (R) XEON (R) CPU 1.87 Ghz.

• Processing Speed: 64 bit Processor

• Memory: RAM 18.542640 GB

• Operating System: 64 bit Debian 3.2.35.2

Each instance of the cluster contains four virtual processors. The cluster in the PetaSky

cloud infrastructure was configured by assigning PETASKY-1 as namenode, and as-

signing PETASKY-2 and PETASKY-3 as data nodes. Notably, the namenode plays

the role of data node as well. It is also worth noting that these instances are shared by

other users as well because, PetaSky is a public cloud.

The SHARD framework was installed on the PetaSky cloud. The datasets were copied

from the non-cloud host machine to the PetaSky instance PETASKY-1. The query file

queries sparql.txtwas also copied to the same instance.

Four experiments were performed on the PetaSky cloud infrastructure. The queries

were performed on the following datasets:

• C UdataSet S2

• C UdataSet S4

• C UdataSet S5

• C UdataSet S7

The results of these experiments were recorded and analyzed.

Query results and analysis Table 6 presents the results of the queries performed on

the datasets. Since scalability was not the issue, the experiment was shifted to cloud

based infrastructure to optimize the response time. However, the response time was

not optimized as desired although this infrastructure provides more processing capa-

bility than the non-cloud one. The performance of SHARD was rather degraded in

distributed environment. The response times of queries are more than the response

times of queries performed in non-cloud based single machine cluster infrastructure.

This is the main reason no experiment was conducted after finishing the experiment

with dataset C UdataSet S7. Figure 9 shows the response times of queries on dif-

ferent size datasets.

Interestingly, the pattern of response time is found the same as the previous experi-

ments. To explain more, like the previous experiment, response time of Query 2 is the

highest of all whereas response times of queries 4 and 16 are the lowest of all. Like

the experiments in Phase - I, the correlation between size of the dataset and response

time is positive.

While running experiments on the PetaSky cloud, we observed that one or more of

the compute nodes failed. Hadoop is a fault tolerant system, the namenode can assign

the job of the failed compute node to another node which is active. In hadoop, each

compute node sends a signal called heartbeat to the namenode at a regular interval. The
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Queries C Udata- C Udata- C Udata- C Udata-

Set S2 Set S4 Set S5 Set S7

Query 1 437762 1270535 1848299 2675383

Query 2 1431660 4098426 5967641 8868094

Query 3 398984 1199660 1813116 2640609

Query 4 1107177 3317469 4941861 7301488

Query 5 408639 1222865 1786475 2626656

Query 6 174279 573898 836381 1243090

Query 7 910899 2740167 3951826 5909064

Query 8 1109634 3399223 4921301 7178025

Query 9 1168131 3785146 5494386 8016436

Query 10 399340 1248625 1795034 2595177

Query 11 401399 1243834 1780964 2589490

Query 12 799216 2539781 3660651 5326362

Query 13 381591 1190937 1697386 2492465

Query 14 168119 563958 832149 1211306

Table 6: Response times for the queries on the PetaSky cloud infrastructure

default value for interval is three seconds. If the namenode does not receive heartbeat

from a compute node, then it considers the compute node a failed node and assigns

corresponding job to another active computer node.

The compute nodes PETASKY-2 and PETASKY-3 were failed to send heartbeat to

the namenode PETASKY-1 within the specified time and therefore were considered

the failed nodes. We observed that one compute node failed more than once while

running the queries. Table 7 shows the number of times the PETASKY-n instances

Datasets Occurrence of Failure Occurrence of Failures

in PETASKY-2 in PETASKY-3

C UdataSet -1 3 2

C UdataSet -2 5 7

C UdataSet -3 6 8

C UdataSet -4 9 11

Table 7: Occurrences of failure during experiments

had failed.

Furthermore, we observed that the failure rate of compute nodes increased with in-

crement of datasize. The failure rate of both compute nodes of PETASKY-2 and

PETASKY-3 was found more while processing queries on C UdataSet S4 than

C UdataSet S2 dataset. Notably, the namenode PETASKY-1 is a compute node

as well which never failed. According to our understanding, the high failure rate of

compute nodes was the reason which increased the query response times substantially.
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Figure 4: Comparison of response times for queries on the PetaSky cloud infrastructure

8.1.3 Experimentation with SHARD—Phase III

SHARD so far was scalable as the triplestore could handle gigabytes of data containing

millions of triples. Nonetheless, the performance was never satisfactory. However, the

creators of SHARD did claim that the repository is scalable and efficient [20]. They

supported their claim based on experiments they conducted with SHARD. The results

of their experiments showed that the response times of Query 9 is 740 seconds, which

essentially indicates that SHARD is able to process the queries with much higher speed

than what we observed in our experiments. Their queries were performed on a dataset

containing 800 million triples which is equivalent to our C UdataSet S8GB dataset.

Since Kurt et al. used 19 XL nodes of the Amazon’s Elastic Cloud,28 we assumed that

the performance discrepancy we observed for our dataset was perhaps due to the num-

ber of instances required to process big data. Therefore, we built our own LIRIS cloud

infrastructure to contain nineteen instances, each of which has the same specification

except for the storage of the namenode. The specification of the LIRIS cloud instances

is as follows:

• Processor: Intel Core Duo CPU 2.2 Ghz. Each instance has 2 processors.

• Processing Speed: 64 bit Processor

• Memory: RAM 8 GB

• Operating System: 64 bit Ubuntu 12.04

Considering the storage, the namenode of the LIRIS cloud has 610 GB of storage,

whereas the remaining instances have 110 GB each. Like PetaSky, the LIRIS cloud is

public; thus, the instances are shared by other users. It was configured by assigning

28
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
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Queries C UdataSet S2 C UdataSet S4

Query 1 940206 2901310

Query 2 3664658 8948040

Query 3 1251061 2937791

Query 4 3085118 7449991

Query 5 1217698 2913151

Query 6 597691 1452316

Query 7 2466565 5882546

Query 8 3099742 7213797

Query 9 3612315 8421878

Query 10 1225850 2859148

Query 11 1231084 2862419

Query 12 2421422 5754733

Query 13 1214504 2926672

Query 14 593124 1449000

Table 8: Response times for queries processed on the PetaSky cloud infrastructure

one namenode and eighteen compute nodes, with the namenode playing the role of a

compute node as well.

The SHARD framework was installed on the LIRIS cloud environment. The datasets

and the query file were copied to LIRIS Cloud from the non-cloud host. Only two

experiments were performed on the LIRIS Cloud infrastructure. The queries were

carried out on the C UdataSet S2 and C UdataSet S4 datasets.

Results and analysis The results are shown in table 8. Figure 5 shows the com-

parison of response time of experiments carried out on the C UdataSet S2 and

C UdataSet S4 datasets. The results of these experiments are disappointing. The

response times of queries increased dramatically. Furthermore, we observed that the

response times of the queries of the second experiment are significantly more than

the response times of queries carried out in the first experiment. Such a huge differ-

ence between the response times of the queries was not seen in any of the previous

experiments.

After observing the results of queries shown in Table 8, we decided to stop experiment.

8.1.4 A Comparison of 3-Phase Experiment Results

In this section, we provide a graphical representation of the results produced by the

experiments in three phases. We restrict the comparison to C UdataSet S2 and

C UdataSet S4 datasets because only these two experiments were carried out suc-

cessfully on the LIRIS Cloud infrastructure.

The analysis reveals that increasing the number of instances only cannot optimize
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Figure 5: Comparison of response times of queries on the LIRIS cloud infrastructure

the performance of SHARD although the theory says otherwise. We observed this

fact in our experiments. To be fair, in a few cases such as for Queries 2, 4, 7,

and 8 on C UdataSet S2, SHARD on the PetaSky cloud did performe better than

the single non-cloud machine. However, we observed that it was not the same for

C UdataSet S4 dataset. Figure 7shows the comparisons of the response time of

queries performed on this dataset in three phases. For this dataset, the response times

produced by the non-cloud host are the best of all. This implies that, with the in-

crement of datasets, the performance of SHARD degraded in distributed environment

provided by the PetaSky and LIRIS cloud infrastructures.

The results produced by SHARD on the distributed environment provided by the LIRIS

cloud infrastructure raised an important question: Why could SHARD not perform bet-

ter on a larger cloud-based cluster than on a single non-cloud machine? The results led

to another important question: Why could SHARD not reproduce the results reported

in [20]?

From our experience, we strongly disagree that only scaling up the infrastructure opti-

mizes SHARD’s performance. There are more factors that influence the performance

of SHARD. In order to identify these factors, we stopped experiments temporarily

and started a rigorous investigation on experiment environment and technologies we

employed in our experiments. The focal point of the investigation was Hadoop.

After the investigation, we designed a new plan to conduct experiments. The next
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Figure 6: Comparison of response times of three experiments with the

C UdataSet S2 dataset in the three phases

Figure 7: Comparison of response times in three experiments with the

C UdataSet S4 dataset in three phases

subsections describe the experiments.
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Figure 8: New experiment plan

8.1.5 SHARD Reloaded

In this experimental research, our goal was to reproduce the results of SHARD recorded

in [20]. In order to achieve this goal, we followed a twofold approach: first, we con-

centrated on how to get better performance than that obtained on the non-cloud host.

Then, we applied this knowledge to try and reproduce the published result. Our as-

sumption was if we knew how to achieve the first target, we would be able to reach the

other. Figure 8 shows the experiment plan.

• Dataset Creation: A new smaller dataset was created. The essential reason

for creating a smaller dataset was to reduce the total processing time of the

experiment. The new dataset C UdataSet S16 is 8 GB in size.

• Infrastructure Reconfiguration: The LIRIS cloud infrastructure was reconfig-

ured. We suspended all the machines from the LIRIS cloud infrastructure. The

plan was to compare the one-to-one performance between non-cloud and cloud

hosts with one instance. The purpose was to check the performance of SHARD

on two different infrastructure having same number of machine with the same

specification.

We configured a new instance for the LIRIS cloud infrastructure. The specifica-

tion of the instance is given below:

– Processor: Intel Core Duo 2.20 Ghz 64 bit

– Memory: 8GB

– HDD: SATA 30 GB

The instance has 8 virtual CPUs (VCPUs). The reason for installing 8 VCPUs

was to equalize the processing power of the non-cloud host. We were aware of

the fact that the processing speed influences the performance of Hadoop. No-

tably, 1 Core CPU = 2 VCPUs. Since the non-cloud host had 4 core CPUs,

this was equivalent to 8 VCPUs. Nonetheless, there were still differences be-

tween these machines. There were two differences: (i) the processing power of

the cloud machine was shared whereas the non-cloud based host was not; and,

(ii) the processors of LIRIS cloud instance are less powerful than the processors

of the non-cloud host.

• Hadoop Configuration: We found out that Hadoop has more than 190 param-

eters. We also realized that many of these parameters are critical in determining

the performance of Hadoop, although without any clear correlation. We con-

figured Hadoop by changing the values of these parameters following a “guess-

and-test” approach.
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The SHARD framework was installed on the LIRIS cloud machine. We ran several

experiments in this phase. The next subsection describes the experiments.

8.1.6 Experiments with SHARD—Phase IV

This section presents the analyses the results of the experiments we conducted during

phase IV. During these experiments, different strategies were applied. Experiments

were performed at OffPeak period, the default values of the Hadoop parameters were

changed, and the datasets were compressed. The term ‘OffPeak’ refers to a period

when the instance is not shared by many users. Notably, these strategies were applied

to the LIRIS cloud infrastructure only.

We used the C UdataSet S16 dataset for the first experiment on the non-cloud in-

frastructure. The subsequent experiment was carried out on the LIRIS cloud infras-

tructure on the same dataset at ‘Peak’ period with default values. The experiment was

conducted in local mode. The subsequent experiments were performed on the LIRIS

cloud at ‘OffPeak’ period with default values of the parameters.

Since neither of these experiments produced a better outcome than the results pro-

duced by the non-cloud host, we proceeded changing the default values of the Hadoop

parameters hoping to enhance performance. Five experiments were conducted at ‘Off-

Peak’ period with the changed values of the parameters. The best results with respect

to the response time produced by these experiments were close to the response time

produced by the non-cloud host.

For the next experiments, we compressed the dataset using Bzip2 CoDec. Five ex-

periments were conducted on the compressed dataset with changed default values of

the parameters at ‘OffPeak’ period. The best result among these five was very close to

the result produced by the machine hosted by the non-cloud infrastructure.

For the next experiment, we added a new instance in the LIRIS cloud infrastructure and

local mode for processing jobs was changed to distributed mode. Then, we launched

the experiment on the C UdataSet S16 dataset at ‘OffPeak’ period. The results of

this experiment were better than the results of all experiments conducted up to that

point on both the cloud and non-cloud infrastructures. The next section discusses the

results.

Results and analysis We now compare the outcomes of the experiments. We se-

lected the best results from the group experiments. In particular, we selected results

from the following experiments:

• Exp OffPeak 1 DV,

• Exp OffPeak 1 CV,

• Exp OffPeak 6 CV Compressed.

We also selected Exp Peak 1 DV and Exp NC 1 DV for the comparison. Table 9

shows the response times of the queries performed in these experiments.
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Queries Exp Off- Exp Off- Exp Off- Exp Off- Exp NC

Peak 1 CV Peak 1 DV Peak 6 CV Peak 1 DV- Peak 1 DV

Compressed

Query 1 145688 151854 158595 2955467 132724

Query 2 776775 1315630 408698 1249933 538170

Query 3 147519 145686 128140 232571 135273

Query 4 931979 903893 367268 1076594 466737

Query 5 186404 163412 119686 181673 134293

Query 6 60898 53216 48709 67732 54174

Query 7 1167413 1007699 379748 1172036 392557

Query 8 1154007 938264 311338 955160 455734

Query 9 550115 522442 335699 584148 450885

Query 10 139327 153408 120980 167346 134271

Query 11 139458 138333 123515 270536 134306

Query 12 322609 308843 232111 602061 292719

Query 13 118369 120454 117018 156577 113274

Query 14 55144 56109 48971 114361 54140

Table 9: response times for the Queries on a 8 GB dataset

Figure 9 depicts the comparison of the results produced in these experiments.

To simplify our discussion, we rank the experiments according to response time. Ta-

ble 10 shows the ranking.

Experiments Rank

Exp OffPeak 1 DV 3

Exp OffPeak 1 CV 3

Exp OffPeak 6 CV Compressed 1

Exp Peak 1 DV 4

Exp NC 1 DV 2

Table 10: Ranking of experiment response times

This analysis shows that the queries of the experiment Exp Peak 1 DV are the most

expensive as the response time of each query are longer than the response time of all

other experiments except for Query 2. The experiment Exp Peak 1 DV is ranked at

the 4th place. By contrast, this also shows that the response time of the queries of

the experiment Exp OffPeak 6 CV Compressed is the lowest except for the re-

sponse time of Query 1. For the first time, the performance of SHARD in a distributed

environment provided by the LIRIS cloud infrastructure improved on its performance

on the non-cloud host. The experiment Exp OffPeak 6 CV Compressed is ranked 1st.

The experiments Exp OffPeak 1 DV and Exp OffPeak 1 CV are ranked 3rd since the

response response time of these experiments are equal. The experiment Exp NV 1 DV

is ranked 2nd. The response time of this experiment is better than other experiments

except for Exp OffPeak 6 CV Compressed, which is the best of all.
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Figure 9: Comparison of response time performances on an 8 GB dataset

8.2 Experimentation with HadoopRDF

In this section we describe our experiments with HadoopRDF. HadoopRDF was in-

stalled on the non-cloud host ‘Ced Exp Sys 3’ where Hadoop was already configured.

The datasets and query file were already stored in the host machine. The only ex-

periment conducted using this triplestore was on the dataset ‘C UdataSet S2.’ The
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framework works in two different phases: (i) data preprocessing phase, and (ii) Query

Processing Phase. The three steps in the data preprocessing phase were: (i) splitting

triples by predicates (PS), (ii) splitting triples by predicate Object Type(POST), and

(iii) splitting triples by predicate Object of Non Type (POSNT). While running the

first phase, the experiment could not be completed successfully. The system threw an

exception that is explained below.

PS Error During the preprocessing phase, HadoopRDF uses its Parser to

parse the PREFIXes that exist in a dataset. The error was thrown

by the system due to failure of this PREFIX parsing phase. As we

analyzed the parser carefully, we found that the problem was due to

a misconfiguration of the default input and output paths. The parser

could not find the input path to read the files and the output path to

store the data after parsing.

Solution We created two different folders: an input folder for storing the data

read by the parser and an output folder for writing the triples after

the split.

The PS step was completed successfully after fixing the error. The next steps were

POST and POSNT. We observed that the POSNT step completed successfully if and

only if the POST step completed successfully. However, HadoopRDF failed to com-

plete the POST step on our datasets. While running the experiment, the system threw

an exception. Unfortunately this error could not be fixed, and therefore the triplestore

could not be tested any further.

9 Expectation vs. Reality

Before starting the experiments, we expected SHARD to reproduce the result reported

in [20]. However, from what we could observe in our experiments, SHARD failed

to reproduce the result even though the exact same infrastructure was provided. The

reproducibility of SHARD’s behavior was always in question throughout the exper-

iments. The results were not always reproducible in our experiments as well. Fig-

ure 10 illustrates this fact, showing the outcomes of the experiments conducted on the

‘C UdataSet S16’ dataset.

We conducted six experiments using the same environment and infrastructure on this

dataset. Figure 10 shows that the outcomes for most of the queries were not consistent.

In some cases, the response times of the same query performed in different experiments

vary significantly—for example, the response times of Query 2, 4, 7, and 8.

According to our analysis, SHARD’s performance heavily relies on Hadoop’s config-

uration. Our observation revealed that SHARD plays virtually no role in optimizing

the response time. The triplestore does not provide any mechanism such as indexing

that could improve its performance.
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One might expect that increasing the instances in the environment will increase the

speed of processing map and reduce jobs. However, based on our experience, we

can only conclude that this is not true. Essentially, several parameters influence the

processing time of map and reduce jobs. Our expectation was that changing the values

of theses parameters would improve the performance of Hadoop. While some minor

improvement was observed in experiments with changed values of the parameters, that

was still far from the desired level. The performance of Hadoop reached optimum level

when the number of instances was increased, the values of parameters were changed,

and compression and decompression technique was used.

10 Conclusion and Future Work

In this technical report, we presented the results of experiments performed on SHARD

and HadoopRDF triples stores. The report provides the detail of what has been expe-

rienced and attained from the experiments.

An experiment platform called CedExP was introduced in this report. CedExP is an

extensible platform which facilitates experimenting scalable triplestores. The platform

facilitates scaling up the computing node to any number upon requirement. This plat-

form was used in conducting the experiments.

The experiment was started with SHARD and then HadoopRDF was experimented.

While experimenting SHARD, it was found that SHARD triplestore cannot count the

newly generated data until a query is launched on the dataset. Besides, it was necessary

to understand the nature of the graphs. A graph analyzer called “N3 Analyzer” has

been developed to count the number of triples contained in a newly generated dataset.

The main purpose of this experimental research was to evaluate the performance of

the triplestores. Reproducing the outcomes reported in the literature was the Litmus

Test for the triplestores HadoopRDF and SHARD. The performance reported in the

literatures essentially demonstrates the high-level of efficiency of these triplestores.

Thus, before running experiments with HadoopRDF and SHARD, our expectation

was very high. However, they produced disappointing outcomes although CedExP was

configured following the specifications provided in the literature. The results were not

even comparable with the results published in the literatures.

Seeing the unexpected unsatisfactory results, we applied several techniques (such as

CoDec) to improve them. Some improved the performance significantly, however not

as much as we were expecting. These techniques have been explained in this report.

During our experiments, several errors were encountered. Solutions for most of these

errors were provided. Nevertheless, a few errors were insolvable. For example, a fatal

error in the JVM forced us to discontinue the experiment on the non-cloud host. Also,

the experiment on HadoopRDF was cancelled due to a problem that is deeply rooted

in the framework itself for which we had no access.

The essential epiphany that this work made us reach is that the standard Hadoop tech-

nology is far from being a magic wand. Still, it does provide a scalable, though low-

level, processing infrastructure for processing Big Data. According to our experience,
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in order to achieve efficient query processing, specifically for Big Linked Data (or

“Blinked Data,” as we call that), it must be adapted to the specificity of RDF triple-

based data. This is because the HDFS, which is the central component of Hadoop, is

a monolithic black-box design. Our experiments have unveiled a few shortcomings

due to this non-transparency aspect of Hadoop. Nonetheless, we think that conducting

our experiments has given us hints on how to modify Hadoop to enhance its ability to

process queries on Blinked Data efficiently.

As for future experiments, testing other existing triplestores is coming next: Jena-

Hbase [12], Jena TDB,29 OpenLink’s Virtuoso,30 and RDF3X,31 to name a few. We

will also continue experimenting with SHARD until we can reproduce the published

results.

A high-performance scalable triplestore is sine qua non for the CEDAR Project. The

objective of this in-depth hands-on experimental work with the state of the art is

to build our own triplestore for processing Blinked Data as needed by the CEDAR

Project.

Appendix

A A Tale of a Safari

A.1 The trip plan

At the outset, our journey’s essential plan started out with trying to obtain an answer to

this question: What candidate triplestores can fit the interests of the CEDAR project?

In order to answer this question, we scanned the web using different search strings

such as “big RDF repositories,” “big RDF triplestores,” and “Large-scale triplestore.”

In this way, we could identify several candidate triplestores. Table 11 provides the list

of repositories that were found on the web. Then, we filtered this list based on the

following criteria:

• Is the architectural type of the RDF repository centralized or distributed?

• Is the type of the underlying technology conventional or MapReduce-based?

• Is the license type of the triplestore proprietary or open source?

• Is the scale of data that the triplestore can handle large, medium, or small?

Regarding the last point, the range of the scale is defined as follows. A dataset that is

less than 20 GB is considered small scale; 21–50 GB is medium scale; above 50 GB is

considered large. The scale is decided based upon the number of triples contained in a

dataset of a particular size. For example, a dataset of more than 80 GB contains more

than 500 million triples.

29
http://jena.apache.org/documentation/tdb/

30
http://virtuoso.openlinksw.com/

31
https://code.google.com/p/rdf3x/
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3Store 4Store 5Store BigData

AllegroGraph ARC BigOWLIM SHARD

BrightstarDB Dydra IBM DB2 SerQL

Apache Jena Mulgara OntoBroker StrixDB

OpenAnzo OpenLink Oracle OWLLIM

Meronymy SPARQL DBS Parliament RAP

Pointrel System Profium Sense HadoopRDF Stardog

RDF:Core RDF:Trine RDF-3X Kowaqri

RDFBroker Redland RedStore RDF gateway

Saffron Memory Base Semantics Platform Sesame Virtuso Open Link

Jena HBASE

Table 11: List of RDF triple repositories

Since distributed repositories that are built on MapReduce technology are our prime

interest, the Hadoop/MapReduce technology was given higher priority. Therefore,

those repositories relying on this technology were flagged as potential candidates to

experiment with. Our essential motivation for selecting this technology rely on the

following points:

• Hadoop/MapReduce-based triplestore can be easily scalable [20];

• Hadoop/MapReduce is a cost-effective technology as it can be deployed on con-

ventional hardware [23]; and,

• Hadoop’s Distributed File System (HDFS), which is the core strength of the

Hadoop/MapReduce technology, reduces the complexity of handling many tasks,

bearing the onus on itself.

Nevertheless, we do plan to test repositories that are built on other distributed tech-

nology at some time in the future, but not in the priority list. In fact, in the process

of this initial investigation, we realized that most RDF repositories rely on traditional

technologies rather than on MapReduce technology.

The license type of the repositories is another criterion for finding the potential can-

didate repositories. Since re-engineering open source applications does not have legal

obligations, our first preference has focused on open source repositories.

We also paid attention to results of experiments that had already been carried out using

such triplestores. This brought us to several immediate potential candidate triplestores.

This set is just an initial set, or course. But we had to start somewhere, so we focused

on this study on SHARD [20] and HadoopRDF [11]. Experimenting with other triple-

stores will follow in further work.
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A.2 The trek itself

Painting the experiment landscape We designed and implemented an experiment

platform that comprises different technologies. We downloaded these technologies

Apache Hadoop, SHARD, HadoopRDF from the web. We also downloaded the exper-

iment queries from the Lehigh University Benchmark (LUBM) portal and then stored

them into a file.32 LUBM has defined fourteen queries written in SPARQL.

The stepping stone First and foremost, we needed a dataset to be large. Therefore,

the first step was to create a big RDF dataset. In order to create the dataset, we used

LUBM data generator that is integrated in the SHARD triplestore as a component for

generating datasets of universities. We customized the data generation parameters and

created different datasets. We stored the dataset in appropriate locations.

Cedar meets the first challenge While generating the datasets, the application was

crashed due to low specification of the host machine in particular, low memory size.

Moreover, the host machine had low processing speed and storage. We replaced the

host machine by a new machine with richer specification. Then, the data generator was

hosted and configured in the new machine.

A simple test with SHARD The first triplestore we tested was SHARD itself. We

started with a simple test on a very small dataset of size 13 MB. This test was essen-

tially to check whether our experimental platform could be configured properly.33

The simple test failed and was fixed However, this simple test failed due to invalid

SPARQL expressions found in the LUBM queries. The application threw an exception

as it failed to read the syntax. In order to resolve this problem, we refined the queries.

Then, we relaunched the experiment. Then, the test completed successfully.

The experiment begins After successful completion of the simple test, we con-

cluded that CedExp had been configured properly. The experiments were conducted

in four phases on non-cloud and cloud infrastructures. Additionally, the queries were

launched as job runs both in local and distributed modes. In the first phase, the ex-

periments were carried out on the non-cloud infrastructure and the mode of running

jobs was local. We submitted the fourteen LUBM queries with SHARD on a 220 GB

dataset.

Crashed and managed However, we experienced a crash immediately after submit-

ting the queries. Upon observation, it turned out that the crash was due to the large size

of the dataset. So we considered two possible workarounds: (i) replacing the host ma-

chine with a more powerful host; or, (ii) splitting the dataset into different sizes such

32
http://swat.cse.lehigh.edu/projects/lubm/

33CedExp—see Section 5.
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as 20, 40, and 60 GB. We chose the latter because we wanted to assess what maximum

size of the dataset could be processed by the host.

The queries resubmitted After slicing the datasets, we relaunched our experiments

on several datasets of size 20 GB each. We continued with such experiments using

datasets of inceasing sizes until SHARD failed.

Encountering an unsolvable problem The last successful experiment was carried

out on the dataset of 97 GB. After that, we ran into an exception while querying a

116 GB dataset. Unfortunately, we could not find any way to solve this problem. This

compelled us to change the experiment environment.

Migrating to the PetaSky cloud-based infrastructure The second phase of the

experiment begins here. In this phase, the experiment was migrated to the PetaSky

cloud-based infrastructure hosted at the LIRIS.34 Each of the LIRIS PetaSky machines

is more powerful in terms of main memory than the machine we used for the non-cloud

infrastructure. The datasets and query file were copied to the master machine of the

PetaSky cluster. On these machines, we ran the queries with SHARD on datatsets of

20, 40, 60, and 80 GB, and all were successful.

The performance was mediocre We had expected an improvement of performance

of the SHARD triplestore on the PetaSky cloud infrastructure than what we had ob-

served on the non-cloud infrastructure. Unfortunately, that was not the case: the results

produced by the experiments conducted on the PetaSky cloud environment were not

satisfactory. In fact, the performance of SHARD in this three-machine cluster was

worse!

Can larger be better? Since the targeted query-processing time was not achieved, a

larger cluster consisting of twenty machines was built. This experiment infrastructure

was named “LIRIS Cloud-Based Infrastructure.” The SHARD triplestore was config-

ured for the new infrastructure. Additionally, datasets and files were copied to this new

infrastructure. Then, we ran the LUBM queries.

Our expectation regarding this cluster was very high. However, yet again, we were

disappointed: the performance of these experiments degraded even more significantly.

What can change the world? The experiment results for the cloud-based infrastruc-

ture prompted a question: What are the factors that influence the performance of an ap-

plication that runs on a Hadoop-based environment? Before starting our experiments,

we had assumed that increasing the number of node instances would improve the per-

formance of SHARD. However, the outcome was in fact the opposite. Therefore, we

dedicated the fourth phase of our experiment to identifying exactly what factors do

34
http://com.isima.fr/Petasky
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indeed affect the performance of job processing using Hadoop and MapReduce. We

configured the experiment platform on both the cloud and non-cloud environments.

A small dataset of size 8 GB was created for the new experiments. The purpose of

reducing the data size was to reduce the total time consumed by an experiment.

In search of the Holy Grail In our investigation, we found that Hadoop has several

configuration parameters. We studied these parameters in order to identify those that

influence the performance of Hadoop’s job processing. We could narrow down this

set of parameters to some that, as we could observe, did affect the performance of

Hadoop.

Then, we restarted the experiments on both the cloud and non-cloud infrastructure.

Some experiments were performed in local mode with default values of configuration

parameters. A difference in terms of query processing time was observed in the results

produced on the cloud and non-cloud infrastructures. The non-cloud machine host

performed the best. This result triggered a question, How can the cloud-based host be

made to have a better the performance that that of the non-cloud host? Answering this

question was critical because the non-cloud host has a much lower capacity for dataset

sizes. Indeed, for Big Data, the cloud-based host is clearly a mandatory platform.

At this stage, our aim was to answer this question. From this stage onward, we

launched experiments on a host on the LIRIS cloud infrastructure only. The key idea

was that, if it could be possible to elucidate how to ameliorate the performance of the

non-cloud host, then it would be possible to reach the target performance set at the

beginning of our study. To this end, we changed the values of the configuration pa-

rameters of Hadoop, and assigned different values in each experiment until the target

performance was reached.

Triumph over feeble performance The experiments with changed values of the

parameters produced significant results: the performance time did improved.

In our study, we found that CoDec can be applied to improve the performance of

Hadoop. The dataset was compressed using BZIP2 CoDec and the queries were

launched on compressed dataset. Interestingly, the result produced through this ex-

periment was very close to the results produced by the non-cloud host. Then, we

instantiated a new virtual machine on the LIRIS cloud infrastructure and we relaunch

the queries. Finally, the cloud-based host outperformed the non-cloud host. The two-

machine cluster with data compression technique and changed values of configuration

parameters gave the best performance of SHARD.

HadoopRDF loaded Alongside SHARD, we tested HadoofRDF. Unfortunately, it

was not possible to conduct a successful test with this triplestore due to anomalies in

its behavior. Since we could not find any documentation to help us debug it, we were

compelled to abort the test.
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A ÏT-KACI, H., et al. Experiments with Scalable Triplestores

What is the current location on the experiment space? At this stage, we con-

ducted experiments with SHARD on larger datasets. We increased the number of

instances on the LIRIS cloud infrastructure. The datasets were compressed. The plan

was plan to submit queries on each of these datasets. In addition, we implemented our

own triplestore within the CEDAR project to overcome all shortcomings encountered

in the triplestores we experimented with.

B Script for Splitting Dataset

Listing 1: Script for Segmenting the Dataset.

if [ $# == 3 ]

then

inputFolder=$1

outputFolder=$2

nbFilesPerFolder=$3

nbFiles=13140

folder=7

echo "mkdir -p $outputFolder/data$folder"

mkdir -p $outputFolder/data$folder

#copying each file in the inputFolder

for f in $inputFolder/*

do

#if $nbFiles == $nbFilesPerFolder means the folder is full.

#So I incremente the folder, create the new one

#and reset the number files.

if [ $nbFiles == $nbFilesPerFolder ]

then

folder=‘expr $folder + 1‘

mkdir -p $outputFolder/data$folder

echo "mkdir -p $outputFolder/data$folder"

nbFiles=1

else

nbFiles=‘expr $nbFiles + 1‘

fi

#moving the file into the right folder

mv $inputFolder/$(basename $f)

$outputFolder/data$folder/$(basename $f)

echo "mv $1/$(basename $f)

$outputFolder/data$folder/$(basename $f)"

done

else

echo "Usage: $0 inputFolder outputFoler nbFileParFolder"

fi
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